Fabrication of Thick, Sol Gel Pzt Films: Applications to Macroscopic Piezoelectric Devices

1994 ◽  
Vol 360 ◽  
Author(s):  
D.A. Barrow ◽  
T.E. Petroff ◽  
M. Sayer

AbstractLead zirconate titanate (PZT) films of up to 60 μm in thickness have been fabricated on a wide variety of substrates using a new sol gel process. The dielectric properties (∈ = 900), ferroelectric (Ec = 16 kV/cm and Pr = 35 μC/cm 2) and piezoelectric properties are comparable to bulk values. The characteristic Curie point of these films is at 420 °C. Piezoelectric actuators have been developed by depositing thick PZT films on both planar and coaxial substrates. Stainless steel cantilevers and optical fibres coated with a PZT film exhibit flexure mode resonant vibrations observable with the naked eye. A low frequency in-line fibre optic modulator has been developed using a PZT coated optical fibre. The high frequency resonance of a 60 μm film on a aluminum substrate has been observed.

2007 ◽  
Vol 280-283 ◽  
pp. 239-242 ◽  
Author(s):  
Wen Gong ◽  
Xiang Cheng Chu ◽  
Jing Feng Li ◽  
Zhi Lun Gui ◽  
Long Tu Li

Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary were deposited on silicon wafers by using a modified sol-gel method. Introducing a seeding layer between the interface of PZT film and platinum electrode controlled the texture of PZT films. The lead oxide seeding layer results in highly (001)-textured PZT film, while the titanium dioxide seeding layer results in (111)-textured one. SEM and XRD were used to characterize the PZT thin films. The ferroelectric and piezoelectric properties of the PZT films were evaluated and discussed in association with different preferential orientations.


2005 ◽  
Vol 20 (6) ◽  
pp. 1428-1435 ◽  
Author(s):  
J. Pérez ◽  
P.M. Vilarinho ◽  
A.L. Kholkin ◽  
J. Manuel Herrero ◽  
C. Zaldo

Lead zirconate titanate (PZT) films of composition close to the morphotropic phase boundary were deposited onto standard Si/SiO2/Ti/Pt substrates using a modified sol-gel process. The preparation conditions were optimized to obtain high-quality films at sufficiently low temperature (Ta - 500 °C). The dielectric, ferroelectric, and piezoelectric properties of the films were then measured as a function of the annealing temperature and the number of distillations to evaluate their suitability for micromechanical applications. The maximum values of the longitudinal charge and voltage piezoelectric coefficients were d33 ∼ 65 pm/V and g33 ∼ 4 × 10−3 Vm/N, respectively. The results indicate that the piezoelectric properties improved and became saturated with increasing number of distillations and are almost independent on Ta. Only moderate decrease of the piezoelectric response with frequency suggests that the investigated PZT films can be used in high-frequency piezoelectric applications. The results are discussed in terms of the microstructure and interface effects on the piezoelectric deformation in ferroelectric thin films.


1999 ◽  
Vol 14 (2) ◽  
pp. 494-499 ◽  
Author(s):  
S. Arscott ◽  
R. E. Miles ◽  
J. D. Kennedy ◽  
S. J. Milne

0.53Ti0.47)O3 have been prepared on platinized GaAs (Pt–GaAs) substrates using a new 1,1,1-tris(hydroxymethyl)ethane (THOME) based sol-gel technique. Rapid thermal processing (RTP) techniques were used to decompose the sol-gel layer to PZT in an effort to avoid problems of GayAs outdiffusion into the PZT. A crystalline PZT film was produced by firing the sol-gel coatings at 600 or 650 ° for a dwell time of 1 s using RTP. A single deposition of the precursor sol resulted in a 0.4 μm thick PZT film. X-ray diffraction measurements revealed that the films possessed a high degree of (111) preferred orientation. Measured average values of remanent polarization (Pr ) and coercive field (Ec) for the film annealed at 650 ° for 1 s were 24 μC/cm2 and 32 kV/cm, respectively, together with a low frequency dielectric constant and loss tangent at 1 kHz of 950 and 0.02. These values are comparable to those obtainable on platinized silicon (Pt–Si) substrates using conventional sol-gel methods, and are an improvement on PZT thin films prepared on platinized GaAs using an earlier sol-gel route based on 1,3-propanediol.


2008 ◽  
Vol 15 (01n02) ◽  
pp. 1-5 ◽  
Author(s):  
CHUNYU SHAO ◽  
JING WANG ◽  
WEIJIE DONG ◽  
YAN CUI ◽  
MIN JI

Samples of lead zirconate titanate Pb ( Zr 0.53 Ti 0.47) O 3 with europium ( Eu ) doping concentration of 0, 0.5, 1.5, 3 mol% (PEZT) were fabricated by sol–gel method. XRD spectra showed that the introduction of Eu into PZT favored the growth of (100) orientation. With 3% Eu content, the preferential orientation of the film converted from (111) to (100) orientation. The Eu -doped PZT films exhibited lower leakage current less than 10-9 A/cm2 and the behavior of leakage current was discussed in terms of defect chemistry theorem. When Eu content was 1.5%, the remanent polarization (P r ) increased to 28 μ C/cm2 which was much higher than that of undoped PZT film.


2005 ◽  
Vol 20 (4) ◽  
pp. 882-888 ◽  
Author(s):  
Gun-Tae Park ◽  
Chee-Sung Park ◽  
Jong-Jin Choi ◽  
Hyoun-Ee Kim

Highly (100)- and (111)-oriented lead zirconate titanate (PZT) films with a thickness of 350 nm were deposited on platinized Si substrates through a single spinning of a PZT sol containing polyvinylpyrrolidone (PVP) as an additive. The crystallographic orientation of the film was strongly influenced by pyrolysis conditions after spin coating. When the spin-coated sol was pyrolyzed at temperatures above 320 °C for relatively long periods of time (>5 min), (111)-oriented film was formed after annealing at 700 °C for 10 min. On the other hand, when the same sol was pyrolyzed at 320 °C for short periods of time (<5 min), the film was strongly oriented to the (100) direction after annealing. Organic residues derived from PVP decomposition acted as nucleation sites for the (100) oriented grains during annealing after the pyrolysis. The effective d33 of the (100)-oriented PZT film (100 pC/N) was much higher than that of the (111)-oriented film (62 pC/N) with the same thickness.


2002 ◽  
Vol 748 ◽  
Author(s):  
C. L. Zhao ◽  
Z. H. Wang ◽  
W. Zhu ◽  
O. K. Tan ◽  
H. H. Hng

ABSTRACTLead zirconate titanate (PZT) films are promising for acoustic micro-devices applications because of their extremely high electromechanical coupling coefficients and excellent piezoelectric response. Thicker PZT films are crucial for these acoustic applications. A hybrid sol-gel technology has been developed as a new approach to realize simple and cost-effective fabrication of high quality PZT thick films. In this paper, PZT53/47 thick films with a thickness of 5–50 μm are successfully deposited on Pt-coated silicon wafer by using the hybrid sol-gel technology. The obtained PZT thick films are dense, crack-free, and have a nano-sized microstructure. The processing parameters of this technology have been evaluated. The microstructure of the film has been observed using field-emission scanning electron microscopy and the crystallization process has been monitored by the X-ray diffraction. The thick films thus made are good candidates for fabrication of piezoelectric diaphragm which will be an essential element of microspeaker and microphone arrays.


2001 ◽  
Vol 666 ◽  
Author(s):  
B.W. Olson ◽  
L.M. Randall ◽  
C.D. Richards ◽  
R.F. Richards ◽  
D.F. Bahr

ABSTRACTPiezoelectric oxide films, such as lead zirconate titanate (PZT), are now being integrated into MEMS applications. Many PZT derived systems are deposited using a sol-gel process, which can be used in a microelectronics processing route using spin coating as the deposition method. An application of interest for PZT films is in power generation, where a flexing membrane is used to transform mechanical to electrical energy. The current study was undertaken to identify the relationships between the processing, microstructure, and mechanical reliability of these films. Films were deposited onto both monolithic and bulk micromachined platinized silicon wafers using standard sol-gel chemistries, with roughness and grain size tracked using electron and scanning probe microscopy. Mechanical properties were evaluated in a dynamic bulge testing apparatus. Grain size variations in the Pt film between 35 and 125 nm are shown to have little effect on grain size of the subsequent PZT film and the adhesion of the PZT to the Pt film. Only the Pt film with 125 nm grains was shown to undergo any significant interfacial fracture. Fatigue tests suggest film lifetime is primarily limited by the number of pre- existing flaws in the film from processing. Reducing the microcrack density has been shown to produce films and devices that fail at strains of 1.4% and have mechanical fatigue lifetimes in excess of 100 million cycles at strains simulating the operating conditions.


2012 ◽  
Vol 1427 ◽  
Author(s):  
Kanu priya Sharma ◽  
Thomas Oseroff ◽  
Leda Lunardi

ABSTRACTCrack free lead zirconate titanate (PZT) films for piezoelectric based MEMS devices have been prepared by a multiple coating sol gel process on platinized silicon (100) substrates. Rapid thermal annealing and Conventional furnace annealing were used for densification and crystallization of the amorphous PZT films. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM) were used to observe surface film morphology and grain growth. The phase content of the films was analyzed using X-ray diffraction. The role of intermetallics formed during the heat treatment in the growth of different orientations has also been observed. Film aging critical for device performance has been observed and methods to revert aging effects have been examined and discussed.


2013 ◽  
Vol 582 ◽  
pp. 15-18
Author(s):  
Y. Minemura ◽  
Y. Kondoh ◽  
H. Funakubo ◽  
Hiroshi Uchida

One-axis-oriented Pb (Zr,Ti)O3(PZT) films were fabricated using a chemical solution deposition technique on (111)Pt/TiO2/(100)Si and Inconel625 substrates buffered by nanosheet Ca2Nb3O10(ns-CN). The (001)-oriented PZT crystals (Zr/Ti=0.40:0.60, tetragonal) were preferentially grown on (001)ns-CN/Inconel625, whereas the PZT crystals deposited on (001)ns-CN/(111)Pt/ TiO2/(100)Si exhibited preferential PZT(100) orientation. The resulting PZT film on (001)ns-CN/Inconel625 indicated remanent polarization of approximately 59 μC/cm2, which was significantly larger than that on (001)ns-CN/(111)Pt/TiO2/(100)Si.


2020 ◽  
Vol 28 ◽  
pp. 65-70 ◽  
Author(s):  
Victor V. Petrov ◽  
Yuriy N. Varzarev ◽  
Anton S. Kamentsev ◽  
Andrey A. Rozhko ◽  
Oksana A. Pakhomova

In this paper, we consider the technological features of the formation of thin ferroelectric films of lead zirconate titanate (PZT) by the method of plasma high-frequency reactive sputtering. The crystal structure, morphology and elemental composition of films deposited on silicon and oxidized silicon substrates are investigated. It is shown that the obtained PZT films have a perovskite structure and are polycrystalline with a predominant crystallite growth in the (110) direction. An automated test bench has been designed and manufactured for measuring the electrophysical parameters of ferroelectric films. The measured CV characteristics of the Ni/PZT/Si structure show the hysteresis caused by the polarization of the PZT film. It is noted that the asymmetry of the dependence of the spontaneous polarization on the applied voltage can be caused by the presence of surface states at the PZT/Si interface.


Sign in / Sign up

Export Citation Format

Share Document