Freezing Assisted Protein Delivery by Using Polymeric Cryoprotectant

2014 ◽  
Vol 1622 ◽  
pp. 123-127
Author(s):  
Sana AHMED ◽  
Kazuaki MATSUMURA

ABSTRACTA number of drug carrier systems such as liposomes, polymeric-nanoparticles, microparticles, polymeric micelles have been investigated for intracellular delivery. Among these liposomes are the potential drug vehicles for efficient cytosolic delivery. They have an adhesive property for cell membrane to encapsulate the drug or protein effectively and showing the enhanced absorption rate. One of the problems could be the difficulty of incorporation of the drug or protein into cell. Therefore many studies of the drug carriers have been developed to enhance the intracellular delivery of materials. Here we propose the novel method to improve the intracellular uptaking by using freeze concentration. Solutes are excluded from ice crystallization and concentrated in the remaining solution during freezing by freezing concentration. We have reported that polymeric cryoprotectant which is carboxylated poly-L-lysine was adsorbed on to the cell membrane during freezing and caused effective freeze concentration. In this study we investigated that delivery of protein effectively taking place by liposome as a carrier agent. It was successfully delivered protein to L929 cells via freeze concentration using polymeric cryoprotectant as a novel drug delivery.

2015 ◽  
Vol 2015 ◽  
pp. 1-27 ◽  
Author(s):  
Karolina Werengowska-Ciećwierz ◽  
Marek Wiśniewski ◽  
Artur P. Terzyk ◽  
Sylwester Furmaniak

Nanomedicine is, generally, the application of nanotechnology to medicine. The term nanomedicine includes monitoring, construction of novel drug delivery systems, and any possible future applications of nanotechnology and nanovaccinology. In this review, the most important ligand-nanocarrier and drug-nanocarrier bioconjugations are described. The detailed characterizations of covalently formed bonds between targeted ligand and nanocarrier, including amide, thioether, disulfide, acetyl-hydrazone and polycyclic groups, are described. Also, the coupling of small elements and heteroatoms in the form of R-X-R the “click chemistry” groups is shown. Physical adsorption and chemical bonding of drug to nanocarrier surface involving drug on the internal or external surfaces of nanocarriers are described throughout possibility of the formation of the above-mentioned functionalities. Moreover, the most popular nanostructures (liposomes, micelles, polymeric nanoparticles, dendrimers, carbon nanotubes, and nanohorns) are characterized as nanocarriers. Building of modern drug carrier is a new method which could be effectively applied in targeted anticancer therapy.


Author(s):  
Y. Rao ◽  
K. Deepthi ◽  
K.P. Chowdary

Microemulsions are clear, transparent, thermodynamically stable dispersions of oil and water, stabilized by an interfacial film of surfactant frequently in combination with a co-surfactant. Recently, there has been a considerable interest for the microemulsion formulation, for the delivery of hydrophilic as well as lipophilic drug as drug carriers because of its improved drug solubilization capacity, long shelf life, easy of preparation and improvement of bioavailability. In this present review, we discuss about the various advantages of microemulsion in pharmaceuticals, along with its preparation, evaluation and research work carried out on microemulsions.


Author(s):  
Dr.S.Bhagavathy Sivathanu ◽  
Shivapriya G ◽  
Shivapriya G

Liposome is a spherical vesicle which contains atleast one lipid bilayer. Liposomes are used as a novel drug carriers because of its hydrophobic and hydrophilic nature, it has many advantages in the field of medical sciences. There are some other drug carriers like dendrimers, micelles, niosomes. Out of all, liposomes are considered to be the most promising agent for drug delivery. The uniqueness of liposome is when it is used as a pharmaceutical drug, it acts as a natural receptor. Thus it acts as an antigen and binds with the antibody (cancer cell) without causing any damage to the adjacent cells. For the synthesis of liposomes, a phospholipid is required. The liposomes can be synthesized using egg yolk and chloroform. So the basic phospholipid is obtained from egg yolk. For more stability, the liposomes are prepared using popc. The present work  discuss about the effective preparation of drug loaded liposomes using popc (1- palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). POPC is an important phospholipid for biophysical experiments. Additionally chloroform is used as the solvent for the liposome preparation. The drug chosen for liposome loading is vitexin (vxn), which is an effective therapeutic agent against inflammation and cancer. The vesicular size, shape, drug entrapment efficacy, stability, electrochemical property and drug releasing property of the formulated liposomes were characterized. The results showed that the formulated liposomes are considered as the better drug carrier system and good choice for biotransformation within the cell to reach the target site such as cancer cells. Even though available treatments like chemotherapy and radiation therapy, causes damage to the surrounding cells, the alternative drug transferring system such as liposomal mediated drug transfer within the cell is considered as good choice of treatment to avoid such complications. The aim of liposome mediated  drug carrier system is to develop a method to reach the drug to the target site. After drug delivery at the target site, the liposomes are fused within the surface of the body. This is because of the pH of liposomes, which is at 7.4 and temperature is maintained at 37 oC. So, the vxn loaded liposomes are considered as the novel drug carriers for the successful targetted drug delivery.


2020 ◽  
Author(s):  
Lucia Massi ◽  
Adrian Najer ◽  
Robert Chapman ◽  
Christopher Spicer ◽  
Valeria Nele ◽  
...  

<p>Many diseases are associated with the dysregulated activity of enzymes, such as matrix metalloproteinases (MMPs). This dysregulation can be leveraged in drug delivery to achieve disease- or site-specific cargo release. Self-assembled polymeric nanoparticles are versatile drug carrier materials due to the accessible diversity of polymer chemistry. However, efficient loading of sensitive cargo, such as proteins, and introducing functional enzyme-responsive behaviour remain challenging. Herein, peptide-crosslinked, temperature-sensitive nanogels for protein delivery were designed to respond to MMP-7, which is overexpressed in many pathologies including cancer and inflammatory diseases. The incorporation of <i>N-</i>cyclopropylacrylamide (NCPAM) into <i>N</i>-isopropylacrylamide (NIPAM)-based copolymers enabled us to tune the polymer lower critical solution temperature from 33 to 44 °C, allowing the encapsulation of protein cargo and nanogel-crosslinking at slightly elevated temperatures. This approach resulted in nanogels that were held together by MMP-sensitive peptides for enzyme-specific protein delivery. We employed a combination of cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small angle neutron scattering (SANS), and fluorescence correlation spectroscopy (FCS) to precisely decipher the morphology, self-assembly mechanism, enzyme-responsiveness, and model protein loading/release properties of our nanogel platform. Simple variation of the peptide linker sequence and combining multiple different crosslinkers will enable us to adjust our platform to target specific diseases in the future.</p>


2021 ◽  
Author(s):  
M. K. Darwish ◽  
M. S. Said ◽  
A. A. El-Sayed ◽  
R. A. Sobh ◽  
A. A. Abdel Khalek

Abstract This work aimed to overcome the main drawbacks of some essential anticancer drugs as 5-Fluorouracil (5-FU) by controlled loading with novel drug carriers. By a differential microemulsion technique, nanosized particles derived from a copolymer of poly(methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA)) with different monomer ratios have been synthesized and used as a drug carrier. Poly(MMA-co-HEMA)/MWCNT nanocomposite was also synthesized using an in-situ microemulsion polymerization technique and used as a 5-FU carrier. Different techniques have characterized these ground-breaking drug delivery systems such as FT-IR, XRD, TEM, TGA, zeta potential, and a particle size analyzer. The effects of monomer feed composition, 5-FU content, and MWCNTs content on morphological and structural properties, in-vitro 5-FU release, and entrapment efficiency (EE%) have been studied. It was noted that the inclusion of MWCNTs in the 5-FU-loaded polymer increases the thermal stability and raises the entrapment efficiency (EE%) to hit 99% at CNTs:5-FU ratio of 2:1. The anticancer drug release from the co-polymeric nanospheres depends on the HEMA ratio, 5-FU/copolymer ratio, CNT/5-FU ratio, and the pH of the medium. The optimized nanocomposite demonstrated higher anti-tumor activity against the cell lines CaCo-2, MCF-7, and HepG-2 and higher cytotoxicity against HepG-2 relative to CaCo-2 and MCF-7.


2015 ◽  
Vol 3 (3) ◽  
pp. 490-499 ◽  
Author(s):  
Gongyan Liu ◽  
Quanqing Luo ◽  
Haiqi Gao ◽  
Yuan Chen ◽  
Xing Wei ◽  
...  

Cell membrane-inspired polymeric micelles were designed as drug carriers for cancer therapy.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 697 ◽  
Author(s):  
Zhi-Yuan Wu ◽  
Cheng-Chang Lee ◽  
Hsiu-Mei Lin

Nanoparticle-based drug delivery systems are among the most popular research topics in recent years. Compared with traditional drug carriers, mesoporous silica nanoparticles (MSN) offer modifiable surfaces, adjustable pore sizes and good biocompatibility. Nanoparticle-based drug delivery systems have become a research direction for many scientists. With the active target factionalized, scientists could deliver drug carriers into cancer cells successfully. However, drugs in cancer cells could elicit drug resistance and induce cell exocytosis. Thus, the drug cannot be delivered to its pharmacological location, such as the nucleus. Therefore, binding the cell membrane and the nuclear target on the nanomaterial so that the anticancer drug can be delivered to its pharmacological action site is our goal. In this study, MSN-EuGd was synthesized by doping Eu3+ and Gd3+ during the synthesis of MSN. The surface of the material was then connected to the TAT peptide as the nucleus target for targeting the cancer nucleus and then loaded with the anticancer drug camptothecin (CPT). Then, the surface of MSN-EuGd was bonded to the hyaluronic acid as an active target and gatekeeper. With this system, it is possible and desirable to achieve dual imaging and dual targeting, as well as to deliver drugs to the cell nucleus under a hyaluronidase-controlled release. The experimental approach is divided into three parts. First, we conferred the material with fluorescent and magnetic dual-imaging property by doping Eu3+ and Gd3+ into the MSN. Second, modification of the cell membrane target molecule and the nucleus target molecule occurred on the surface of the nanoparticle, making the nanoparticle a target drug carrier. Third, the loading of drug molecules into the carrier gave the entire carrier a specific target profile and enabled the ability to treat cancer. In this study, we investigated the basic properties of the drug carrier, including physical properties, chemical properties, and in vitro tests. The result showed that we have successfully designed a drug delivery system that recognizes normal cells and cancer cells and has good anticancer effects.


2020 ◽  
Author(s):  
Lucia Massi ◽  
Adrian Najer ◽  
Robert Chapman ◽  
Christopher Spicer ◽  
Valeria Nele ◽  
...  

<p>Many diseases are associated with the dysregulated activity of enzymes, such as matrix metalloproteinases (MMPs). This dysregulation can be leveraged in drug delivery to achieve disease- or site-specific cargo release. Self-assembled polymeric nanoparticles are versatile drug carrier materials due to the accessible diversity of polymer chemistry. However, efficient loading of sensitive cargo, such as proteins, and introducing functional enzyme-responsive behaviour remain challenging. Herein, peptide-crosslinked, temperature-sensitive nanogels for protein delivery were designed to respond to MMP-7, which is overexpressed in many pathologies including cancer and inflammatory diseases. The incorporation of <i>N-</i>cyclopropylacrylamide (NCPAM) into <i>N</i>-isopropylacrylamide (NIPAM)-based copolymers enabled us to tune the polymer lower critical solution temperature from 33 to 44 °C, allowing the encapsulation of protein cargo and nanogel-crosslinking at slightly elevated temperatures. This approach resulted in nanogels that were held together by MMP-sensitive peptides for enzyme-specific protein delivery. We employed a combination of cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small angle neutron scattering (SANS), and fluorescence correlation spectroscopy (FCS) to precisely decipher the morphology, self-assembly mechanism, enzyme-responsiveness, and model protein loading/release properties of our nanogel platform. Simple variation of the peptide linker sequence and combining multiple different crosslinkers will enable us to adjust our platform to target specific diseases in the future.</p>


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Minghua Li ◽  
Xiaolong Gao ◽  
Chao Lin ◽  
Aijun Shen ◽  
Jing Luo ◽  
...  

AbstractMacrophage cell membrane-camouflaged nanocarriers can effectively reduce immune cell clearance and actively target tumors. In this study, a macrophage cell membrane-camouflaged mesoporous silica nanorod (MSNR)-based antitumor drug carrier equipped with a cationic polymer layer was developed. As drug carriers, these MSNRs were loaded with the thermosensitive phase change material L-menthol (LM), the chemotherapy drug doxorubicin (DOX) and the fluorescent molecule indocyanine green (ICG). The rod-like shape of the MSNRs was shown to enhance the penetration of the drug carriers to tumors. In the weakly acidic tumor microenvironment, the cationic polymer exhibited a proton sponge effect to trigger macrophage cell membrane coating detachment, promoting tumor cell uptake. Following nanocarrier uptake, ICG is heated by near-infrared (NIR) irradiation to make LM undergo a phase transition to release DOX and generate a synergistic effect of thermochemotherapy which kills tumor cells and inhibits tumor growth together with reactive oxygen species (ROS) produced by ICG. Overall, this nanohybrid drug delivery system demonstrates an intelligent cascade response, leads to tissue-cell specific targeting and improves drug release accuracy, thus proving to be an effective cancer therapy. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document