Role of Morphology on the Large Coercive Behavior in Co80Ni20Nanowires

2014 ◽  
Vol 1708 ◽  
Author(s):  
A. Gaul ◽  
N. Ouar ◽  
S. Mercone ◽  
F. Zighem ◽  
F. Schoenstein ◽  
...  

ABSTRACTFerromagnetic metal CoNi-based nano-objects have been synthesized in a polyol media within different elaboration conditions in order to drive their morphology (i.e. enhancing their length-to-diameter ratio ﴾d/L﴿, and changing the diameter d ratio over edge T width ﴾d/L﴿). Transmission Electron Microscopy (TEM) studies revealed unexpected effects on the Co80Ni20 nano-objects arising from the magnetic field assisted synthesis. This gave us the opportunity to compare this latter to coming from the variation of Ruthenium (III) chloride hydrate nucleating agent concentration. A Co80Ni20 anisotropic particles elaboration was successfully achieved under zero magnetic field assisted synthesis, while an important percentage of isotropic nanoparticles appeared immediately under the application of a small magnetic field (i.e. H > 500 Oe). In the first case we were able to sharply drive both the aspect ratio and head morphology of nanowires (T and ﴾d/T﴿). The good crystallinity and structures symmetry of all our samples have been proved by X-Ray Diffraction (XRD) pattern analysis. Magnetic static properties showed a ferromagnetic standard behavior with a coercive field efficiency which was strongly dependent on shape parameters. The magnetic static behavior was studied within a standard Stoner-Wohlfart model as a function of the observed morphologies. Our observations are fully consistent with a shape anisotropy origin behavior of the enhanced coercivity measured as function of the decreasing ﴾d/L﴿ ratio. However, they revealed the presence of contributions to the global effective anisotropy coming from other complex terms then the shape one (i.e. conic head impressiveness, dipolar interactions and magnetocrystalline anisotropy).

Open Physics ◽  
2010 ◽  
Vol 8 (4) ◽  
Author(s):  
Lidia Rednic ◽  
Iosif Deac ◽  
Eugen Dorolti ◽  
Marin Coldea ◽  
Vasile Rednic ◽  
...  

AbstractX-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) and magnetic measurements as a function of applied magnetic field and temperature for In1−x MnxSb (0.05≤x≤0.2) system are reported. Magnetic measurements performed at high and small magnetic field in ZFC and FC indicate the coexistence of ferromagnetic In1−x MnxSb solid solution and two types of magnetic cluster: ferromagnetic MnSb and ferrimagnetic Mn2Sb. XPS valence band and Mn 2p core level spectra have confirmed the presence of MnSb and Mn2Sb phases. TEM images show some manganese antimonide phase microinclusions with dimension between (30–40) nm.


2019 ◽  
Vol 61 (4) ◽  
pp. 652
Author(s):  
А.И. Дмитриев ◽  
А.В. Кочура ◽  
А.П. Кузьменко ◽  
Л.С. Паршина ◽  
О.А. Новодворский ◽  
...  

AbstractWe observed a temperature-controlled increase in the magnetic anisotropy and its dispersion in thin GaMnSb films with MnSb nanoinclusions obtained by pulsed laser deposition. The data of transmission electron microscopy indicate that in the samples, a transition of the crystalline structure of magnetic MnSb nanoinclusions from hexagonal (spatial group (sp. gr.) P 6_3/ mmc ) to cubic (sp. gr. F -43 m ) takes place. Analysis of the temperature dependences of the magnetic moment m ( T ), measured using a SQUID magnetometer, obtained for both unannealed and annealed samples cooled in a zero magnetic field and a magnetic field of 10 kOe, indicates that this mechanism is not unique. In unannealed samples, the distribution of the magnetic anisotropy of MnSb nanoinclusions, determined from the dependences of m ( T ), is unimodal. In the annealed samples, the same dependence becomes multimodal. This means that several thermally activated processes occur in the samples during annealing, resulting in several “populations” of nanoinclusions present in the annealed thin films. The contribution to the increase in the magnetic anisotropy during annealing can result in the structural phase transition, the mismatch of the crystal lattices between MnSb and GaSb, an increase in the average volume of MnSb nanoinclusions, and a change in their stoichiometry.


Author(s):  
T. Hirayama ◽  
Q. Ru ◽  
T. Tanji ◽  
A. Tonomura

The observation of small magnetic materials is one of the most important applications of electron holography to material science, because interferometry by means of electron holography can directly visualize magnetic flux lines in a very small area. To observe magnetic structures by transmission electron microscopy it is important to control the magnetic field applied to the specimen in order to prevent it from changing its magnetic state. The easiest method is tuming off the objective lens current and focusing with the first intermediate lens. The other method is using a low magnetic-field lens, where the specimen is set above the lens gap.Figure 1 shows an interference micrograph of an isolated particle of barium ferrite on a thin carbon film observed from approximately [111]. A hologram of this particle was recorded by the transmission electron microscope, Hitachi HF-2000, equipped with an electron biprism. The phase distribution of the object electron wave was reconstructed digitally by the Fourier transform method and converted to the interference micrograph Fig 1.


Author(s):  
Dirk Doyle ◽  
Lawrence Benedict ◽  
Fritz Christian Awitan

Abstract Novel techniques to expose substrate-level defects are presented in this paper. New techniques such as inter-layer dielectric (ILD) thinning, high keV imaging, and XeF2 poly etch overflow are introduced. We describe these techniques as applied to two different defects types at FEOL. In the first case, by using ILD thinning and high keV imaging, coupled with focused ion beam (FIB) cross section and scanning transmission electron microscopy (STEM,) we were able to judge where to sample for TEM from a top down perspective while simultaneously providing the top down images giving both perspectives on the same sample. In the second case we show retention of the poly Si short after removal of CoSi2 formation on poly. Removal of the CoSi2 exposes the poly Si such that we can utilize XeF2 to remove poly without damaging gate oxide to reveal pinhole defects in the gate oxide. Overall, using these techniques have led to 1) increased chances of successfully finding the defects, 2) better characterization of the defects by having a planar view perspective and 3) reduced time in localizing defects compared to performing cross section alone.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanhee Kim ◽  
Dilip Bhoi ◽  
Yeahan Sur ◽  
Byung-Gu Jeon ◽  
Dirk Wulferding ◽  
...  

AbstractIn order to understand the superconducting gap nature of a $$\hbox {2H-Pd}_{0.08} \hbox {TaSe}_2$$ 2H-Pd 0.08 TaSe 2 single crystal with $$T_{c} = 3.13 \text { K}$$ T c = 3.13 K , in-plane thermal conductivity $$\kappa $$ κ , in-plane London penetration depth $$\lambda _{\text {L}}$$ λ L , and the upper critical fields $$H_{c2}$$ H c 2 have been investigated. At zero magnetic field, it is found that no residual linear term $$\kappa _{0}/T$$ κ 0 / T exists and $$\lambda _{\text {L}}$$ λ L follows a power-law $$T^n$$ T n (T: temperature) with n = 2.66 at $$T \le \frac{1}{3}T_c$$ T ≤ 1 3 T c , supporting nodeless superconductivity. Moreover, the magnetic-field dependence of $$\kappa _{0}$$ κ 0 /T clearly shows a shoulder-like feature at a low field region. The temperature dependent $$H_{c2}$$ H c 2 curves for both in-plane and out-of-plane field directions exhibit clear upward curvatures near $$T_c$$ T c , consistent with the shape predicted by the two-band theory and the anisotropy ratio between the $$H_{c2}$$ H c 2 (T) curves exhibits strong temperature-dependence. All these results coherently suggest that $$\hbox {2H-Pd}_{0.08} \hbox {TaSe}_2$$ 2H-Pd 0.08 TaSe 2 is a nodeless, multiband superconductor.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Haibiao Zhou ◽  
Qiyuan Feng ◽  
Yubin Hou ◽  
Masao Nakamura ◽  
Yoshinori Tokura ◽  
...  

AbstractThe CE phase is an extraordinary phase exhibiting the simultaneous spin, charge, and orbital ordering due to strong electron correlation. It is an ideal platform to investigate the role of the multiple orderings in the phase transitions and discover emergent properties. Here, we use a cryogenic high-field magnetic force microscope to image the phase transitions and properties of the CE phase in a Pr0.5Ca0.5MnO3 thin film. In a high magnetic field, we observed a clear suppression of magnetic susceptibility at the charge-ordering insulator transition temperature (TCOI), whereas, at the Néel temperature (TN), no significant change is observed. This observation favors the scenario of strong antiferromagnetic correlation developed below TCOI but raises questions about the Zener polaron paramagnetic phase picture. Besides, we discoverd a phase-separated surface state in the CE phase regime. Ferromagnetic phase domains residing at the surface already exist in zero magnetic field and show ultra-high magnetic anisotropy. Our results provide microscopic insights into the unconventional spin- and charge-ordering transitions and revealed essential attributes of the CE phase, highlighting unusual behaviors when multiple electronic orderings are involved.


2021 ◽  
Vol 7 (13) ◽  
pp. eabf1467
Author(s):  
T. Asaba ◽  
V. Ivanov ◽  
S. M. Thomas ◽  
S. Y. Savrasov ◽  
J. D. Thompson ◽  
...  

The transverse voltage generated by a temperature gradient in a perpendicularly applied magnetic field, termed the Nernst effect, has promise for thermoelectric applications and for probing electronic structure. In magnetic materials, an anomalous Nernst effect (ANE) is possible in a zero magnetic field. We report a colossal ANE in the ferromagnetic metal UCo0.8Ru0.2Al, reaching 23 microvolts per kelvin. Uranium’s 5f electrons provide strong electronic correlations that lead to narrow bands, a known route to producing a large thermoelectric response. In addition, uranium’s strong spin-orbit coupling produces an intrinsic transverse response in this material due to the Berry curvature associated with the relativistic electronic structure. Theoretical calculations show that in UCo0.8Ru0.2Al at least 148 Weyl nodes, and two nodal lines, exist within 60 millielectron volt of the Fermi level. This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature.


2018 ◽  
Vol 177 ◽  
pp. 08004
Author(s):  
Łukasz Tomków

The model of a single Nuclotron-type cable is presented. The goal of this model is to assess the behaviour of the cable under different loads. Two meshes with different simplifications are applied. In the first case, the superconductor in the cable is modelled as single region. Second mesh considers individual strands of the cable. The significant differences between the distributions of the electric current density obtained with both models are observed. The magnetic field remains roughly similar.


2007 ◽  
Vol 06 (03n04) ◽  
pp. 173-177
Author(s):  
YU. G. ARAPOV ◽  
S. V. GUDINA ◽  
G. I. HARUS ◽  
V. N. NEVEROV ◽  
N. G. SHELUSHININA ◽  
...  

The resistivity (ρ) of low mobility dilute 2D electron gas in an n- InGaAs / GaAs double quantum well (DQW) exhibits the monotonic "insulating-like" temperature dependence (dρ/dT < 0) at T = 1.8–70 K in zero magnetic field. This temperature interval corresponds to a ballistic regime (kBTτ/ħ > 0.1–3.5) for our samples, and the electron density is on an "insulating" side of the so-called B = 0 2D metal–insulator transition. We show that the observed features of localization and Landau quantization in a vicinity of the low magnetic-field-induced insulator–quantum Hall liquid transition is due to the σxy(T) anomalous T-dependence.


Sign in / Sign up

Export Citation Format

Share Document