Glass as dielectric for high temperature power capacitors

2014 ◽  
Vol 1679 ◽  
Author(s):  
Timothy J Patey ◽  
Christoph Schlegel ◽  
Emmanuel Logakis

ABSTRACTModern polypropylene film power capacitors are state of the art for power factor correction and many DC link applications, but their long-term commercial use is limited to temperatures of less than 85°C. The temperature limit is given by the dielectric polypropylene which has a melting point in the range of 140 to 170°C, while glass is much higher. Thus, the temperature limit could potentially be overcome by use of thin, alkali-free glass as dielectric. “Glass capacitors” employing ultra-thin and high purity glass layers are promising devices for high temperature applications in oil, gas, aerospace, hybrid electric vehicles, DC transmission, and pulsed power systems. This includes emerging power electronic systems using silicon carbide switches and diodes.This work analyzes and compares various glasses with a thickness of less than 50 µm by dielectric spectroscopy and elemental analysis. It is demonstrated that glass is attractive as dielectric for a wide frequency range up to 200°C. It argues that the dielectric losses are currently too great for thin glass to be used within a commercial power capacitor.While high temperature prototypes already exist, we demonstrate through our analysis that further developments are required to integrate this promising device into commercial systems. It is seen that even trace amounts of alkali materials can have an impact on losses. These losses must be further reduced through fundamental research into polarization/conduction mechanisms of various glass components.

Author(s):  
Peter Carter ◽  
Douglas L. Marriott

Design for cyclic loading is emerging as a key question for next generation power systems. Recent developments in techniques for cyclic stress analysis have significant implications for high temperature design. In the same way that limit load analysis is now being used to overcome the difficulties and guesswork of stress classification for steady primary loads, so shakedown and ratcheting analysis can eliminate the more difficult problems of stress classification for cyclic loads. The paper shows how reference stresses defined for shakedown and ratcheting provide rapid and conservative information for design against rupture and creep damage, deformation and strain accumulation, and ratcheting. These techniques will provide additional insights to designers and are likely to augment rather than replace, existing options. These ideas have existed in the research literature for some time, but have now become more accessible by the general industry with a new analysis technique in a commercial finite element code. Examples are given which demonstrate the methodology for nozzles having non-thermal secondary stresses, and prediction of long-term distortion in thermal shock problems.


1989 ◽  
Vol 25 (2) ◽  
pp. 1787-1790 ◽  
Author(s):  
S.K. Singh ◽  
J.H. Murphy ◽  
P.W. Eckels ◽  
C.J. Mole ◽  
A.T. Male ◽  
...  

2019 ◽  
Vol 808 ◽  
pp. 129-135
Author(s):  
Petr Figala ◽  
Rostislav Drochytka ◽  
Radek Hermann ◽  
Jiří Kolísko

This paper studies the fundamental research and development of sprayed cement-based mixture designed to withstand the chemically aggressive conditions. The aim of this paper is to verify the possibilities of usage of suitable secondary raw materials as a substitution of a binder and filler of the original mixture while preserving or improving the physical-mechanical properties. In this part of the research was studied the possibility to substitute the binder in rate of 20-60 wt.% by high temperature fly ash and the whole filler by foundry sand and slag. Test samples were made from nine recipes, in which was monitored the influence of secondary raw materials on the compressive strength and the water absorption after 28 days of curing. The results of this paper show, it is possible to successfully substitute part of the binder by high temperature fly ash and the filler wholly by foundry sand in the sprayed mixture. These optimized recipes showed positive influence mainly in the long-term on mechanical properties.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Yunli Zhang ◽  
Haotian Wu ◽  
Jeff Suhling ◽  
Edward Davis ◽  
...  

Abstract Much of the electronics used to support power systems and enable safety systems resides underhood where operating temperatures are much higher than in traditional consumer applications. Underhood electronics may be subjected to sustained high temperature environment 150°C for long period of time during operation. However, there is insufficient information about the viscoelasticity of epoxy molding compound stored in sustained high temperature for long period of time. In this paper, two different types of epoxy molding compounds have been prepared and aged under two different temperatures: 100°C and 150°C. Multi-frequency scan dynamic mechanical analyzer (DMA) test has been conducted to study the viscoelasticity evolution from pristine, 40 days, 80 days, 120 days. The master curve has been obtained and the prony parameters of EMCs have been calculated. The aging effect of linear viscoelasticity has been discussed.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Kubota KNC-03 is a grade with a combination of high strength and excellent resistance to oxidation. These properties make this alloy suitable for long-term service at temperature up to 1250 deg C (2282 deg F). This datasheet provides information on physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting and joining. Filing Code: Ni-676. Producer or source: Kubota Metal Corporation, Fahramet Division. See also Alloy Digest Ni-662, April 2008.


Alloy Digest ◽  
2020 ◽  
Vol 69 (8) ◽  

Abstract ATI 6-2-4-2 is a near-alpha, high strength, titanium alloy that exhibits a good combination of tensile strength, creep strength, toughness, and long-term stability at temperatures up to 425 °C (800 °F). Silicon up to 0.1% frequently is added to improve the creep resistance of the alloy. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ti-169. Producer or Source: ATI.


Sign in / Sign up

Export Citation Format

Share Document