Guided-mode resonance and field enhancement in semiconductor nanorod arrays

2015 ◽  
Vol 1728 ◽  
Author(s):  
W. X. Yu ◽  
Y. Yi

ABSTRACTGuided mode resonance was numerically demonstrated in the tapered silicon nitride nanorod arrays on glass substrate. Finite difference time domain technique was employed to investigate the detailed light-matter interaction dynamics and the generation of resonance at femtoseconds. Enhanced electromagnetic (EM) field intensity with enhancement factor of 200∼250 could be achieved. This highly concentrated electromagnetic field could be extended to the nanorod array tips and substrate for higher order resonance modes, which allows future application of this transverse propagating field in optical signal amplification, like fluorescence or Raman enhancement.

2021 ◽  
Vol 11 (8) ◽  
pp. 3312
Author(s):  
Tingbiao Guo ◽  
Julian Evans ◽  
Nan Wang ◽  
Yi Jin ◽  
Jinlong He ◽  
...  

In this paper, we show that the guided mode resonance can exist in a low-index waveguide layer on top of a high-index substrate. With the help of the interaction of diffraction from a metal grating and total internal reflection effects, we verify that the guided mode can be supported in the low-index SU8 layer on a high-index substrate. Simulation and experiment show the resonant wavelength can be simply manipulated by controlling the geometrical parameters of the metal grating and waveguide layer. This structure extends the possibilities of guided-mode resonance to a broader class of functional materials and may boost its use in applications such as field enhancement, sensing and display.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hwa-Seub Lee ◽  
Joon Young Kwak ◽  
Tae-Yeon Seong ◽  
Gyu Weon Hwang ◽  
Won Mok Kim ◽  
...  

AbstractTo fabricate a tunable optical filter with a fast response in the near infrared region, a tunable guided-mode resonance (GMR) filter using graphene was proposed and its performance was optimized. In this study, a rigorous coupled wave analysis method was employed to systematically investigate the effects of geometrical configuration of graphene-integrated GMR filters and the optical properties of constituent materials including graphene on their spectral response in terms of tunability and extinction ratio. It was found that as the graphene is located close to the waveguide and the evanescent-field strength at the interface increases, the GMR filter exhibits better tunability. The bandwidth of the filter could be drastically reduced by adopting a low-index contrast grating layer, so that the extinction ratio of an optical signal could be greatly improved from 0.91 dB to 27.99 dB as the index contrast decreased from 0.99 to 0.47, respectively. Furthermore, new practical device designs, that is easy to fabricate and effectively implement the electric-field doping of graphene at low gate voltage, were also suggested and theoretically validated. These results demonstrate not only the excellent potential of a graphene-based tunable GMR filter but also provide practical design guidelines for optimizing the device performance.


2006 ◽  
Vol 31 (9) ◽  
pp. 1223 ◽  
Author(s):  
Chaoyang Wei ◽  
Shijie Liu ◽  
Degang Deng ◽  
Jian Shen ◽  
Jianda Shao ◽  
...  

2018 ◽  
Vol 124 (5) ◽  
pp. 053101
Author(s):  
Zhi Liu ◽  
Jietao Liu ◽  
Buwen Cheng ◽  
Jun Zheng ◽  
Chuanbo Li ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2797
Author(s):  
Jing-Jhong Gao ◽  
Ching-Wei Chiu ◽  
Kuo-Hsing Wen ◽  
Cheng-Sheng Huang

This paper presents a compact spectral detection system for common fluorescent and colorimetric assays. This system includes a gradient grating period guided-mode resonance (GGP-GMR) filter and charge-coupled device. In its current form, the GGP-GMR filter, which has a size of less than 2.5 mm, can achieve a spectral detection range of 500–700 nm. Through the direct measurement of the fluorescence emission, the proposed system was demonstrated to detect both the peak wavelength and its corresponding intensity. One fluorescent assay (albumin) and two colorimetric assays (albumin and creatinine) were performed to demonstrate the practical application of the proposed system for quantifying common liquid assays. The results of our system exhibited suitable agreement with those of a commercial spectrometer in terms of the assay sensitivity and limit of detection (LOD). With the proposed system, the fluorescent albumin, colorimetric albumin, and colorimetric creatinine assays achieved LODs of 40.99 and 398 and 25.49 mg/L, respectively. For a wide selection of biomolecules in point-of-care applications, the spectral detection range achieved by the GGP-GMR filter can be further extended and the simple and compact optical path configuration can be integrated with a lab-on-a-chip system.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ki Young Lee ◽  
Kwang Wook Yoo ◽  
Youngsun Choi ◽  
Gunpyo Kim ◽  
Sangmo Cheon ◽  
...  

Abstract The topological properties of photonic microstructures are of great interest because of their experimental feasibility for fundamental study and potential applications. Here, we show that robust guided-mode-resonance states exist in photonic domain-wall structures whenever the complex photonic band structures involve certain topological correlations in general. Using the non-Hermitian photonic analogy of the one-dimensional Dirac equation, we derive essential conditions for photonic Jackiw-Rebbi-state resonances taking advantage of unique spatial confinement and spot-like spectral features which are remarkably robust against random parametric errors. Therefore, the proposed resonance configuration potentially provides a powerful method to create compact and stable photonic resonators for various applications in practice.


2020 ◽  
Vol 20 (6) ◽  
pp. 3512-3518
Author(s):  
Saleh Khan ◽  
Xiao-He Liu ◽  
Xi Jiang ◽  
Qing-Yun Chen

Highly efficient and effective porous ZnO nanorod arrays were fabricated by annealing ZnO nanorod arrays grown on a substrate using a simple hydrothermal method. The annealing had a positive effect on the nanorod morphology, structure and optical properties. The porosity was closely related to the annealing temperature. After heating at 450 °C, pores appeared on the nanorods. It was demonstrated that the porosity could be exploited to improve the visible light absorption of ZnO and reduce the bandgap from 3.11 eV to 2.99 eV. A combination of improved charge separation and transport of the heat-treated ZnO thus led to an increase in the photoelectrochemical properties. At an irradiation intensity of 100 mW/cm−2, the photocurrent density of the porous nanorod array was approximately 1.3 mA cm−2 at 1.2 V versus Ag/AgCl, which was five times higher than that of the ZnO nanorods. These results revealed the synthesis of promising porous ZnO nanorods for photoelectrochemical applications.


Sign in / Sign up

Export Citation Format

Share Document