Microstructural Control by a Rolling-Annealing Technique and Hydrogen Permeability in the Nb-Ti-Ni alloys

2005 ◽  
Vol 885 ◽  
Author(s):  
Sho Tokui ◽  
Kazuhiro Ishikawa ◽  
Kiyoshi Aoki

ABSTRACTCold rolling reduction, microstructural changes induced by cold rolling and subsequent heat treatment, hydrogen permeability (Φ) of Nb-Ti-Ni duplex phase alloys have been investigated using a rolling machine, a scanning electron microscope (SEM), an X-ray diffractometer (XRD) and a gas flow technique. The Nb-Ti-Ni alloys on the line connecting the TiNi compound and the Nb90Ti10 solid solution alloy show higher rolling reduction of 70 % or more at room temperature. The value of Φ for the Nb40Ti30Ni30 alloy, which is higher than that of pure Pd at 673K, decreases with increasing rolling reduction and attains to one third of that of the original one by the 50 % rolling reduction. The eutectic microstructure consisting of {TiNi+(Nb, Ti)} phases disappears and is replaced by the (Nb, Ti) phase embedded in the TiNi matrix by heat treatment 1073 K or more and for 605ks in a vacuum. However, its Φ value remains as it was by annealing at 1273 K or less, while it increases with increasing annealing periods at 1373 K or more and recovers to the original value after annealing for 605ks. These experimental results indicate that rolling and annealing techniques are the useful method for the preparation of a hydrogen permeable Nb-Ti-Ni alloy membrane.

2007 ◽  
Vol 561-565 ◽  
pp. 889-892
Author(s):  
Yan Dong Liu ◽  
He Tong ◽  
Q.W. Jiang ◽  
Y. Ren ◽  
Yan Dong Wang ◽  
...  

The microstructure characters of pure Iron during cold rolling were studied by HEXD (high-energy x-ray diffraction). The experimental result shows that the Debby ring of HEXD before cold rolling is discrete and very strong, the discrete diffraction points become continue and smooth with the increase of cold rolling reduction. The {001}<110> textures transform to the {001}<uvw> texture after cold rolling, in this process the grains divisional are analyzed by the HEXD result.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Bo Zhang ◽  
Li Meng ◽  
Guang Ma ◽  
Ning Zhang ◽  
Guobao Li ◽  
...  

Twinning behaviors in grains during cold rolling have been systematically studied in preparing ultra-thin grain-oriented silicon steel (UTGO) using a commercial glassless grain-oriented silicon steel as raw material. It is found that the twinning system with the maximum Schmid factor and shear mechanical work would be activated. The area fraction of twins increased with the cold rolling reduction. The orientations of twins mainly appeared to be α-fiber (<110>//RD), most of which were {001}<110> orientation. Analysis via combining deformation orientation simulation and twinning orientation calculation suggested that {001}<110> oriented twinning occurred at 40–50% rolling reduction. The simulation also confirmed more {100} <011> oriented twins would be produced in the cold rolling process and their orientation also showed less deviation from ideal {001}<110> orientation when a raw material with a higher content of exact Goss oriented grains was used.


2006 ◽  
Vol 980 ◽  
Author(s):  
Kazuhiro Ishikawa ◽  
Naoshi Kasagami ◽  
Tomoyuki Takano ◽  
Kiyoshi Aoki

AbstractIn order to develop non-Pd based high performance hydrogen permeation alloys, microstructure, crystal structure and hydrogen permeability of duplex phase M-ZrNi (M=V and Ta) alloys were investigated using a scanning electron microscope, an X-ray diffractometer and a gas flow meter. These results were compared with those of Nb-ZrNi ones which have been previously published. The hydrogen permeation was impossible in the V-ZrNi alloys, because they were brittle in the as-cast state. On the other hand, duplex phase alloys consisting of the bcc-(Ta, Zr) solid solution and the orthorhombic ZrNi (Cmcm) intermetallic compound were formed and hydrogen permeable in the Ta-ZrNi system. The Ta40Zr30Ni30 alloy shows the highest value of hydrogen permeability of 4.1×10-8 [molH2m-1s-1Pa-0.5] at 673 K, which is three times higher than that of pure Pd.


2006 ◽  
Vol 980 ◽  
Author(s):  
Sho Tokui ◽  
Kazuhiro Ishikawa ◽  
Kiyoshi Aoki

AbstractIt has been demonstrated that the as-cast Nb40Ti30Ni30 duplex phase alloy, which consists of the primary (Nb, Ti) solid solution and the fine lamellar type eutectic {TiNi+(Nb, Ti)} phase, shows higher hydrogen permeability ¶ than that of pure Pd without the hydrogen embrittlement at 673K. In this alloy, the eutectic phase contributes to the suppression of the hydrogen embrittlement, while the primary one does mainly to the hydrogen permeation. It is important to note that even if the eutectic microstructure disappears and is replaced by the small spherical (Nb, Ti) phase embedded in the TiNi matrix by rolling and subsequent annealing, its high hydrogen permeability and large resistance to the hydrogen embrittlement are sustained. Furthermore, the present authors have observed that the primary (Nb, Ti) phase is largely elongated along the rolling direction. Consequently, it is expected that rolled and annealed Nb-Ti-Ni alloys show the large anisotropy of the microstructure and the hydrogen permeability. In the present work, the microstructure and hydrogen permeability ¶nof the Nb40Ti30Ni30 alloy after rolling and annealing treatments are examined in order to develop highly hydrogen permeable alloys utilizing the anisotropic microstructure.The primary (Nb, Ti) phase and the very fine eutectic {TiNi+(Nb, Ti)} phase are observed in the as-cast Nb40Ti30Ni30 alloy by scanning electron microscopy (SEM). The X-ray diffractometry (XRD) indicates that this alloy consists of the B2-TiNi intermetallic compounds and the bcc- (Nb, Ti) solid solution. The primary (Nb, Ti) phase is largely elongated along the rolling direction by forging and subsequent rolling at 1173 K. On the other hand, the eutectic microstructure becomes unclear with increasing the rolling reduction. The composite alloys in which the (Nb, Ti) phase is elongated along to the rolling direction are obtained by 69 % rolling reduction. ¶n of this sample is four times higher than that of as-cast one. On the other hand, ¶ for the sample vertical to the rolling direction is reduced to about one third of that of as-cast one. Thus, the hydrogen permeability of the Nb40Ti30Ni30 alloy varies about ten times or more depending on the direction of the primary¡]Nb, Ti¡^ phase. We conclude that it is possible to produce highly hydrogen permeable Nb-Ti-Ni alloys using the anisotropy of the microstructure prepared by hot forging and rolling.


Sign in / Sign up

Export Citation Format

Share Document