Study of ELOG GaN for Application in the Fabrication of Micro-channels for Optoelectronic Devices

2005 ◽  
Vol 892 ◽  
Author(s):  
Lee E Rodak ◽  
N J Berry Ann ◽  
Kalyan Reddy Kasarla ◽  
Nanying Yang ◽  
D Korakakis

AbstractGallium Nitride (GaN) is a promising wide band gap semiconductor material for many optoelectronic applications, especially in the near UV range. Over the past several years, an extensive technical effort has been focused on improving the quality of GaN films through various overgrowth techniques such as epitaxial lateral overgrowth (ELOG), facet controlled epitaxial lateral overgrowth (FACELO), and Pendeoepitaxy. ELOG has been shown to reduce the density of threading dislocations by up to five orders of magnitude [1], however a complete physical model describing lateral overgrowth is needed in order to take full advantage of the process. A lateral overgrowth model will allow for the design and fabrication of three dimensional structures that can lead to novel devices and also to efficient biosensors by integrating micro and nano channels on the same chip as the optoelectronic components.A two-step process has been used to successfully control the geometry of overgrown GaN. Conditions have been identified which give a reduced lateral growth rate, in order to allow expansion of the {112n} plane to form vertical sidewalls and for the design of channel width. These geometries are being examined for possible application in laser diode and micro-channel fabrication for integrating bio-agent detection modules.

1999 ◽  
Vol 581 ◽  
Author(s):  
K.M. Hassan ◽  
A.K. Sharma ◽  
J. Narayan ◽  
J.F. Muth ◽  
C.W. Teng ◽  
...  

ABSTRACTWe have fabricated Ge nanostructures buried in AlN and Al2O3 matrices grown on Si(111) and sapphire substrates by pulsed laser deposition. Our approach involved three-dimensional island growth of low band-gap material followed by a layer of wide band-gap material. The nanodots were uniformly distributed in between alternating layers of AlN or Al2O3. It was observed that these nanodots exhibit crystalline structure when grown at 300-500 °C. The average size of Ge islands was determined to be ∼5-15 nm, which could be varied by controlling laser deposition and substrate parameters. The Raman spectrum showed a peak of the Ge-Ge vibrational mode downward shifted upto 295 cm− which is caused by quantum confinement of phonons in the Ge-dots. The photoluminescence of the Ge dots (size ∼15nm) was blue shifted by ∼0.266 eV from the bulk Ge value of 0.73 eV at 77 K, resulting in a distinct peak at ∼1.0 eV. The spectral positions of both E1 and E2 transitions in the absorption spectra at room temperature and 77K shift toward higher energy as the Ge dot size decreases. The interpretation of these behaviors in terms of quantum confinement is discussed in this work, and the importance of pulsed laser deposition in fabricating novel nanostructures is emphasized


1998 ◽  
Vol 537 ◽  
Author(s):  
R. Zhang ◽  
L. Zhang ◽  
D.M. Hansen ◽  
Marek P. Boleslawski ◽  
K.L. Chen ◽  
...  

AbstractEpitaxial lateral overgrowth (ELO) of GaN on SiO2-masked (0001) GaN substrates has been investigated by using chloride-based growth chemistries via hydride vapor phase epitaxy (HVPE) and metal organic vapor phase epitaxy (MOVPE). Diethyl gallium chloride, (C2H5)2GaCl, was used in as the MOVPE Ga precursor. The lateral and vertical growth rates as well as the overgrowth morphology of ELO GaN structures are dependent on growth temperature, V/III ratio and the in-plane orientation of the mask opening. A high growth temperature and low V/III ratio increase the lateral growth rate and produce ELO structures with a planar surface to the GaN prisms. High-quality coalesced and planar ELO GaN has been fabricated by both growth chemistries. The use of the diethyl gallium chloride source allows for the benefits of HVPE growth to be realized within the MOVPE growth environment.


2016 ◽  
Vol 119 (14) ◽  
pp. 145303 ◽  
Author(s):  
Morteza Monavarian ◽  
Natalia Izyumskaya ◽  
Marcus Müller ◽  
Sebastian Metzner ◽  
Peter Veit ◽  
...  

2004 ◽  
Vol 831 ◽  
Author(s):  
John Muth ◽  
Ailing Cai ◽  
Andrei Osinsky ◽  
Henry Everitt ◽  
Ben Cook ◽  
...  

ABSTRACTRecently, wide band gap II-IV-N2 semiconductors such as ZnSiN2, and ZnGeN2 and ZnSiGeN2 have been synthesized, but very little is known about their band structure, optical properties, or electronic properties. Bulk crystals are hard to synthesize because high temperatures and pressures are required. The success in growing II-IV-N2 films epitaxially by MOCVD creates interesting opportunities. The crystal structure of II-IV-N2 compounds is orthorhombic, and when grown on r-plane sapphire can provide a suitable template for GaN growth. Optical transmission studies of the band edge of ZnSiN2 and ZnSiGeN2 with varying Si and Ge percentages were conducted. The indirect nature of the band gap was investigated, and prism coupling was used to obtain the refractive indices in the visible and NIR portion of the spectrum. Although the crystal symmetry was orthorhombic, the refractive indices indicated uniaxial optical properties. Optical loss measurements indicate that the films are suitable for waveguides and novel devices based on birefringent optical effects.


2011 ◽  
Vol 356-360 ◽  
pp. 435-438
Author(s):  
Ling Cao ◽  
Dai Zong An ◽  
Yan Xin Wang ◽  
Shan Shan He ◽  
Chuang Ju Dong

ZnO is a direct wide band-gap Ⅱ-Ⅵ semiconductor material. For decades, ZnO has gained more and more attention as a wide band semiconductor. This paper introduced a modified homogeneous precipitation method to prepare sheet Ni-doped ZnO crystal. The preparation process was studied and the mechanism of this method was discussed. The properties of the sheet Ni-doped ZnO crystal and the effects of growth parameters on the quality of sheet Ni-doped ZnO crystal were studied using XTJ30-micro image manipulation system, thermal analysis system, X-ray diffraction. etc.


2008 ◽  
Vol 5 (9) ◽  
pp. 3045-3047
Author(s):  
Ryota Senda ◽  
Aya Miura ◽  
Takeshi Kawashima ◽  
Daisuke Iida ◽  
Tetsuya Nagai ◽  
...  

1999 ◽  
Vol 572 ◽  
Author(s):  
Patrick J. Mcnally ◽  
T. Tuomi ◽  
R. Rantamaki ◽  
K. Jacobs ◽  
L. Considine ◽  
...  

ABSTRACTSynchrotron white beam x-ray topography techniques, in section and large-area transmission modes, have been applied to the evaluation of ELOG GaN on A12O3. Using the openings in 100 nm thick SiO2 windows, a new GaN growth took place, which resulted in typical overgrowth thicknesses of 6.8 μm. Measurements on the recorded Laue patterns indicate that the misorientation of GaN with respect to the sapphire substrate (excluding a 30° rotation between them) varies considerably along various crystalline directions, reaching a maximum of a ∼0.66° rotation of the (0001) plane about the [01•1] axis. This is ∼3% smaller than the misorientation measured in the non-ELOG reference, which reached a maximum of 0.68°. This misorientation varies measurably as the stripe or window dimensions are changed. The quality of the ELOG epilayers is improved when compared to the non- ELOG samples, though some local deviations from lattice coherence were observed. Long range and large-scale (order of 100 μm long) strain structures were observed in all multi quantum well epilayers.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3006
Author(s):  
Qiang Wei ◽  
Xiaofan Zhang ◽  
Fang Lin ◽  
Ruozheng Wang ◽  
Genqiang Chen ◽  
...  

Two types of a trench with conventional vertical and new reverse-V-shaped cross-sections were fabricated on single crystal diamond (SCD) substrate using a micro-jet water-assisted laser. In addition, a microwave plasma chemical vapor deposition device was used to produce multiple micrometer-sized channels using the epitaxial lateral overgrowth technique. Raman and SEM methods were applied to analyze both types of growth layer characterization. The hollowness of the microchannels was measured using an optical microscope. According to the findings, the epitaxial lateral overgrowth layer of the novel reverse-V-shaped trench produced improved SCD surface morphology and crystal quality.


Sign in / Sign up

Export Citation Format

Share Document