Studies on the Preparation and Properties of Sheet Ni-Doped ZnO

2011 ◽  
Vol 356-360 ◽  
pp. 435-438
Author(s):  
Ling Cao ◽  
Dai Zong An ◽  
Yan Xin Wang ◽  
Shan Shan He ◽  
Chuang Ju Dong

ZnO is a direct wide band-gap Ⅱ-Ⅵ semiconductor material. For decades, ZnO has gained more and more attention as a wide band semiconductor. This paper introduced a modified homogeneous precipitation method to prepare sheet Ni-doped ZnO crystal. The preparation process was studied and the mechanism of this method was discussed. The properties of the sheet Ni-doped ZnO crystal and the effects of growth parameters on the quality of sheet Ni-doped ZnO crystal were studied using XTJ30-micro image manipulation system, thermal analysis system, X-ray diffraction. etc.

2010 ◽  
Vol 143-144 ◽  
pp. 271-276
Author(s):  
Yan Qiang Jia ◽  
Dong Mei Shi ◽  
Jun Yan

Al-doped ZnO (AZO) nanoparticles were synthesized by using homogeneous precipitation method from Zn(AC)2•2H2O and Al(NO3)3•9H2O. X-ray diffraction (XRD) showed that the AZO nanoparticles were well assigned to hexagonal wurtzite structure, and that the Al3+ did enter the ZnO crystal lattice to substitute the position of Zn2+. Results from scanning electron microscope (SEM) showed that with increasing Al content, the the size of ZAO particles decreased. When Al content was 5 mol%, gives a more homogeneous and finer microstructure. At last, study the electromagnetic performance of AZO particles with different doping concentration of Al3+.


2013 ◽  
Vol 665 ◽  
pp. 182-188
Author(s):  
Rakesh Kumar Sharma ◽  
Sandeep Patel ◽  
Kamlesh Chandra Pargaien

The development of highly sensitive, selective, reliable, low power and compact sensing devices to detect gas is of major importance for terrestrial and space applications. The gas response to different gases and chemicals is related to a great extent to the surface state and morphology of the materials. Zinc oxide (ZnO) is a direct wide band gap semiconductor with an energy gap of ~3.37 eV and a large exciton binding energy of ~60 meV at room temperature (RT) is a promising candidate for functional component for devices and materials in chemical and gas sensors and so on. ZnO nanostructures with various interesting structures and properties have been synthesized, such as nanoparticles, nanorods, nanobelts, nanocombs, nanowires, tetrapod nanostructures. Mn-doped hexagonal (ZnO) semiconductor micro and nanostructures have been synthesized by a simple one-step aqueous solution method at relatively low temperature. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and photoluminescence spectroscopy (PL) have been used to characterize the samples in detail. The XRD studies revealed that Mn doped ZnO micro and nanostructures had wurtzite structure (hexagonal). The as-synthesized ZnO micro and nanostructures consist of very uniform and no secondary phase is observed. X-ray diffraction and EDX results provide the evidence that Mn is incorporated into the ZnO crystals. A strong and wide ultraviolet emission has been observed for the Mn doped ZnO micro and nanocrystals as evidenced by the photoluminescence spectra at room temperature.PL spectra reveals that as synthesized samples are highly pure and crystalline. Magnetism in these samples was also studied by using vibrating sample magnetometer.


2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


Plasmonics ◽  
2021 ◽  
Author(s):  
Soumya Kannoth ◽  
Packia Selvam Irulappan ◽  
Sandip Dhara ◽  
Sankara Narayanan Potty

1994 ◽  
Vol 358 ◽  
Author(s):  
K. Dovidenko ◽  
S. Oktyabrsky ◽  
J. Narayan ◽  
M. Razeghi

ABSTRACTThe microstructural characteristics of wide band gap semiconductor, hexagonal A1N thin films on Si(100), (111), and sapphire (0001) and (10ī2) were studied by transmission electron microscopy (TEM) and x-ray diffraction. The films were grown by MOCVD from TMA1 + NH3 + N2 gas mixtures. Different degrees of film crystallinity were observed for films grown on α-A12O3 and Si substrates in different orientations. The epitaxial growth of high quality single crystalline A1N film on (0001) α-Al2O3 was demonstrated with a dislocation density of about 2*10 10cm−2 . The films on Si(111) and Si(100) substrates were textured with the c-axis of A1N being perpendicular to the substrate surface.


2013 ◽  
Vol 544 ◽  
pp. 234-237
Author(s):  
Mei Ai Lin ◽  
Lin Jun Wang ◽  
Jian Huang ◽  
Ke Tang ◽  
Bing Ren ◽  
...  

Li-doped zinc oxide (ZnO) films were deposited on nucleation side of freestanding diamond (FSD) films by the radio frequency magnetron sputtering method. The effect of oxygen partial pressure on structural, optical and electrical properties of the ZnO films was investigated by X-ray diffraction (XRD) Raman spectroscopy, semiconductor characterization system and Hall effect measurement system. The results showed that the introduction of oxygen as a reactive gas was helpful to improve the crystalline quality of Li-doped ZnO films.


2001 ◽  
Vol 696 ◽  
Author(s):  
Ravi Bathe ◽  
R.D. Vispute ◽  
Daniel Habersat ◽  
R. P. Sharma ◽  
T. Venkatesan ◽  
...  

AbstractWe have investigated the epitaxy, surfaces, interfaces, and defects in AlN thin films grown on SiC by pulsed laser deposition. The stress origin, evolution, and relaxation in these films is reported. The crystalline structure and surface morphology of the epitaxially grown AlN thin films on SiC (0001) substrates have been studied using x-ray diffraction (θ–2θ, ω, and Ψ scans) and atomic force microscopy, respectively. The defect analysis has been carried out by using Rutherford backscattering spectrometry and ion channeling technique. The films were grown at various substrate temperatures ranging from room temperature to 1100 °C. X-ray diffraction measurements show highly oriented AlN films when grown at temperatures of 750- 800 °C, and single crystals above 800 °C. The films grown in the temperature range of 950 °C to 1000 °C have been found to be highly strained, whereas the films grown above 1000 °C were found to be cracked along the crystallographic axes. The results of stress as a function of growth temperature, thermal mismatch, growth mode, and buffer layer thickness will be presented, and the implications of these results for wide band gap power electronics will be discussed.


2015 ◽  
Vol 827 ◽  
pp. 43-48
Author(s):  
Annisa Noorhidayati ◽  
Mia Putri Rahmawati ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

Transition metal ions (Co and Cr) doped ZnO nanoparticles supported on natural zeolite were synthesized using co-precipitation method. The synthesized samples were characterized by means of X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and UV-visible diffuse reflectance spectroscopy. The samples were further used as photocatalyst for degradation of methyl orange and methylene blue in aqueous solutions under UV light irradiation. The results showed that zeolite supported Cr-doped ZnO nanoparticles is more efficient compared with zeolite supported Co-doped ZnO nanoparticles. It is also revealed that zeolite supported samples possessed higher photocatalytic efficiency compared to bare samples.


2011 ◽  
Vol 312-315 ◽  
pp. 393-398
Author(s):  
Roshidah Rusdi ◽  
Norlida Kamarulzaman ◽  
Mohamed Nor Sabirin ◽  
Zurina Osman ◽  
Azilah Abd Rahman

ZnO is a wide band gap semiconductor with many applications such as in solar cells, varistors, and other electrical components. The ZnO material was synthesized using a sol-gel method. The material was characterized using X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The material is pure and single phase. Electron conduction in ZnO nanomaterials was done using alternating current (ac) impedance. The frequency ranges of the measurements used were 1x 10-3 Hz to 1x 106 Hz and the ac impedance measurements were done within a temperature range of 60oC to 100oC. Nyquist plots were drawn and bulk resistances were obtained. Subsequently, conductivity values were calculated and the diffusion characteristics were obtained. From further analysis of the conductivities with temperature, the diffusion of electrons in the material was studied. It was found that the conductivity increased with the increase of temperature which meant that the rate of diffusion of the electrons through the materials also increased. An Arrhenius relation was concluded for the electron diffusion in the ZnO nanomaterials.


2021 ◽  
Vol 407 ◽  
pp. 161-172
Author(s):  
Mahbboobeh Rezaei ◽  
Ali Shokuhfar ◽  
Nikta Shahcheraghi

In this work, a flower-shaped ZnO/GO/Fe3O4 ternary nanocomposite was synthesized via the co-precipitation method. Two significant goals of the study were boosting the degradation efficiency of ZnO and achieving a fast and simple synthesis approach. The structure, properties, and morphology of the product were characterized, and the effect of the ZnO flower-shaped structure in combination with GO nanosheets and magnetite nanoparticles was investigated on the photocatalytic activity. The structure and quality of the prepared nanocomposite were assessed by X-ray diffraction pattern, UV-visible DRS spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM). The catalytic activity of the nanocomposite was assessed by spectrophotometric analysis. The developed nanocomposite offered high photodegradation efficiency in Rhodamine B degradation under UV-C light in comparison with pure ZnO. At a specific period, the efficiency of the synthesized sample was about two times greater than that of pristine ZnO particles. Our nanocomposite is anticipated to have practical benefits in wastewater treatment given its good performance, economic savings through reducing the amount of catalyst consumption and saving time, and being a facile and fast synthesis method.


Sign in / Sign up

Export Citation Format

Share Document