The Mechanism for Ultrananocrystalline Diamond Growth: Experimental and Theoretical Studies

2006 ◽  
Vol 956 ◽  
Author(s):  
Paul William May ◽  
Yuri A. Mankelevich

ABSTRACTAr/CH4/H2 gas mixtures have been used to deposit microcrystalline diamond, nanocrystalline diamond and ultrananocrystalline diamond films using hot filament chemical vapor deposition. A 3-dimensional computer model was used to calculate the gas phase composition for the experimental conditions at all positions within the reactor. Using the experimental and calculated data, we show that the observed film morphology, growth rate, and across-sample uniformity can be rationalized using a model based on competition between H atoms, CH3 radicals and other C1 radical species reacting with dangling bonds on the surface. Proposed formulae for growth rate and average crystal size are tested on both our own and published experimental data for Ar/CH4/H2 and conventional 1%CH4/H2 mixtures, respectively.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 426
Author(s):  
Byeong-Kwan Song ◽  
Hwan-Young Kim ◽  
Kun-Su Kim ◽  
Jeong-Woo Yang ◽  
Nong-Moon Hwang

Although the growth rate of diamond increased with increasing methane concentration at the filament temperature of 2100 °C during a hot filament chemical vapor deposition (HFCVD), it decreased with increasing methane concentration from 1% CH4 –99% H2 to 3% CH4 –97% H2 at 1900 °C. We investigated this unusual dependence of the growth rate on the methane concentration, which might give insight into the growth mechanism of a diamond. One possibility would be that the high methane concentration increases the non-diamond phase, which is then etched faster by atomic hydrogen, resulting in a decrease in the growth rate with increasing methane concentration. At 3% CH4 –97% H2, the graphite was coated on the hot filament both at 1900 °C and 2100 °C. The graphite coating on the filament decreased the number of electrons emitted from the hot filament. The electron emission at 3% CH4 –97% H2 was 13 times less than that at 1% CH4 –99% H2 at the filament temperature of 1900 °C. The lower number of electrons at 3% CH4 –97% H2 was attributed to the formation of the non-diamond phase, which etched faster than diamond, resulting in a lower growth rate.


2016 ◽  
Vol 869 ◽  
pp. 721-726 ◽  
Author(s):  
Divani C. Barbosa ◽  
Ursula Andréia Mengui ◽  
Mauricio R. Baldan ◽  
Vladimir J. Trava-Airoldi ◽  
Evaldo José Corat

The effect of argon content upon the growth rate and the properties of diamond thin films grown with different grains sizes are explored. An argon-free and argon-rich gas mixture of methane and hydrogen is used in a hot filament chemical vapor deposition reactor. Characterization of the films is accomplished by scanning electron microscopy, Raman spectroscopy and high-resolution x-ray diffraction. An extensive comparison of the growth rate values and films morphologies obtained in this study with those found in the literature suggests that there are distinct common trends for microcrystalline and nanocrystalline diamond growth, despite a large variation in the gas mixture composition. Included is a discussion of the possible reasons for these observations.


1997 ◽  
Vol 12 (5) ◽  
pp. 1344-1350 ◽  
Author(s):  
Z. Li Tolt ◽  
L. Heatherly ◽  
R. E. Clausing ◽  
C. S. Feigerle

Addition of a small amount of oxygen to the CH4 and H2 feed gas permits hot filament assisted chemical vapor deposition (HFCVD) of diamond at significantly lower filament and substrate temperatures. The former can be reduced to as low as 1400 °C and the latter to 450 °C. The amount of oxygen required is much lower than what has been used in most studies of the oxygen effect. For each CH4%, there is a narrow window in the O/C ratio, where diamond can be deposited at low temperature. This window shifts to higher O/C ratios as the CH4% increases and expands with increases in filament temperature. The effect of changing substrate and filament temperatures on growth rate and film quality are often not consistent with previous experiences with HFCVD of diamond. Increasing the filament temperature does not always improve the growth rate and film quality, and the non-diamond carbon content in the film is dramatically reduced at lower substrate temperatures. Optimum conditions were found that gave reasonable growth rates (∼0.5 μm/h) with high film quality at filament temperatures below 1750 °C and substrate temperatures below 600 °C. With these reductions in operating temperatures, power consumption can be significantly reduced and the filament lifetime extended indefinitely.


1995 ◽  
Vol 10 (11) ◽  
pp. 2685-2688 ◽  
Author(s):  
Qijin Chen ◽  
Zhangda Lin

Diamond film was synthesized on thin Ti wafers (as thin as 40 μm) via hot filament chemical vapor deposition (HFCVD). The hydrogen embrittlement of the titanium substrate and the formation of a thick TiC interlayer were suppressed. A very low pressure (133 Pa) was employed to achieve high-density rapid nucleation and thus to suppress the formation of TiC. Oxygen was added to source gases to lower the growth temperature and therefore to slow down the hydrogenation of the thin Ti substrate. The role of the very low pressure during nucleation is discussed, providing insight into the nucleation mechanism of diamond on a titanium substrate. The as-grown diamond films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, and x-ray analysis.


1995 ◽  
Vol 416 ◽  
Author(s):  
R. E. Rawles ◽  
W. G. Morris ◽  
M. P. D’Evelyn

ABSTRACTGrowth rates for homoepitaxy of diamond (100) and (111) by hot-filament chemical vapor deposition were measured via in situ Fizeau interferometry and the surface morphologies were subsequently characterized by atomic force microscopy (AFM). (100)-oriented growth from 0.5% CH4 in H2 exhibited pure Arrhenius behavior, with an activation energy of 17±1 kcal/mol, up to a substrate temperature of 1100°C. Addition of oxygen to the feed gas resulted in an increased growth rate below 900°C, a maximum growth rate between 900 and 1000°C, and etching (of diamond) above 1050 - 1100°C. However, the presence of oxygen apparently had less effect on the surface morphology than did the (100)-to-(111) growth rate parameter α, determined directly from the relative growth rates of (100) and (111) substrates mounted side by side. During homoepitaxial growth from 0.5% CH4 in H2 at 875°C of ca. 1-micron-thick films,α = was 2.2 without oxygen and 1.3 for growth with 0.14% O2. The (100) film grown with α = 2.2 was quite smooth, while that with α = 1.3 was covered by numerous hillocks and penetration twins. AFM analysis revealed surprisingly little difference between the (111) films despite the considerable difference in α. Implications of these results for the growth mechanism are discussed.


2012 ◽  
Vol 727-728 ◽  
pp. 1671-1676
Author(s):  
Ursula A. Mengui ◽  
N.G. Ferreira ◽  
M.R. Baldan ◽  
Evaldo Jose Corat

We have proposed the growth of ultrananocrystalline diamond (UNCD) thin films on p-type (100) silicon etched with 27wt. % KOH in H2O. To get homogeneous distribution of micro pyramids on the silicon surface we have varied temperature (62 to 77 °C), etching time (1 to 35 min) and exposition diameter area (5 to 18 mm). For UNCD growth we have used hot filament chemical vapor deposition (HFCVD).The gas mixture have used 1 vol.% methane, 9 vol.% hydrogen and 90 vol.% argon, with the total flow rate of 200 sccm, at work pressure of 30 Torr. Images of Scanning Electron Microscopy (SEM) showed UNCD covered the silicon surface following the micro pyramidal morphology. Raman spectra (514.5 nm) showed all feature bands of UNCD such as: transpolyacethylene (1150 cm-1) and graphite (1350-1575 cm-1). The X-ray diffraction confirmed Raman spectroscopy. These results showed the silicon micro pyramidal structures obtained at 20 min, 75°C and 10 mm exposition diameter area as the more satisfactory for UNCD growth.


1996 ◽  
Vol 11 (5) ◽  
pp. 1114-1119 ◽  
Author(s):  
A. Endo ◽  
H. S. Chauhan ◽  
Y. Nakamura ◽  
Y. Shiohara

Y1Ba2Cu307−x (Y123) crystals were grown by two different methods, the constant undercooling solidification and the continual cooling method, with top seeding by Sm123 seed crystals in order to investigate a relationship between undercooling (ΔT) and a growth rate (R). The crystals of Y123 with a sharp faceted interface, which consisted of {100} and {001} faces, grew epitaxially from the seed. It was found that the growth rates of {100} face (Ra) and that of {001} face (Rc) showed an increasing trend with increasing ΔT, and Rc was faster than Ra within these experimental conditions, ΔT < 20 K. The relation between R and ΔT follows the parabolic equation, viz. Ra ∝ ΔT1.9 and Rc ∝ ΔT1.3 for {100} and {001} faces, respectively. The simulated crystal size using the R and ΔT relations obtained from the constant undercooling method showed good agreement with experimental data by the continual cooling.


Sign in / Sign up

Export Citation Format

Share Document