Mechanical-to-Electrical Energy Conversion of Thin-Film Piezoelectric Diaphragms

2006 ◽  
Vol 973 ◽  
Author(s):  
Dylan J Morris ◽  
Michelle C Robinson ◽  
Leland W Weiss ◽  
Cecilia D Richards ◽  
Robert F Richards ◽  
...  

ABSTRACTA micro (∼1 cm3) dynamic heat engine, capable of producing electrical power from lowgrade heat sources, utilizes a micro-machined diaphragm with a piezoelectric element as a The electromechanical coupling of a piezoelectric diaphragm under large initial stresses and/or large deflections – in the membrane limit – is described here. A simple model is derived for electromechanical transduction of a pressurized piezoelectric membrane and an experiment is described to measure it. Electromechanical coupling initially increases as the square of the center-point deflection as the residual stress is overcome. In the limit of large pressures, the electromechanical coupling approaches a limit that is predicted by the model.

Author(s):  
I. Demir ◽  
R. F. Richards ◽  
D. F. Bahr ◽  
C. D. Richards

The mechanical behavior of a micromachined PZT membrane for power applications is investigated. The membrane is a bulk-micromachined silicon membrane that supports a thin film of piezoelectric ceramic (PZT) sandwiched between platinum and gold electrodes. The membrane undergoes large periodic deflections to convert mechanical power to electrical power in a micro heat engine. An analysis using a variational approach is developed to find an approximate closed from solution based on energy minimization. Experiments were conducted to obtain material properties, residual stresses, and pressure deflection relationships. The modeled results compare well to the experimental results.


2014 ◽  
Vol 1 (1-2) ◽  
Author(s):  
Dragan Avirovik ◽  
Ravi A. Kishore ◽  
Dushan Vuckovic ◽  
Shashank Priya

AbstractShape Memory Alloys (SMAs) exhibit temperature-dependent cyclic deformation. SMAs undergo reversible phase transformation with heating that generates strain which can be used to develop heat engine. In this study, we build upon the concept where environmental heat is first converted into mechanical energy through SMA deformation and then into electrical energy using a microturbine. This SMA heat engine was tailored to function as a miniature energy harvesting device for wireless sensor nodes applications. The results showed that 0.12 g of SMA wire produced 2.6 mW of mechanical power which was then used to drive a miniature electromagnetic generator that produced 1.7 mW of electrical power. The generated electrical energy was sufficient to power a wireless sensor node. Potential design concepts are discussed for further improvements of the SMA heat engine for the wireless sensing platform.


2010 ◽  
Vol 67 ◽  
pp. 64-73 ◽  
Author(s):  
Paul Muralt

The field of piezoelectric thin films for micro and nano systems combines an exciting richness of potential applications with many attractive scientific topics on materials processing and physical properties. Piezoelectricity transforms a mechanical stimulus into an electrical signal, or electrical energy. Miniature thin film devices detect and measure vibrations and acoustic waves, as well as generate electrical power in the mW range by the harvesting of vibration energy. An electrical stimulus can be applied to generate acoustic waves, to damp actively vibrations detected by the same film, or to drive a micro robot. The ability to act in both directions of transfer between mechanical and electrical energy allows for high-performing filters, oscillators, and gravimetric sensors working at frequencies up to10 to 20 GHz. While rigid piezoelectric thin films like AlN excel in GHz applications such as RF filters, ferroelectric thin films like Pb(Zr,Ti)O3 are more efficient in energy conversion and include as further dimension a programmable polarity, which is useful for memory applications.


Aerospace ◽  
2006 ◽  
Author(s):  
David Charnegie ◽  
Changki Mo ◽  
Amanda A. Frederick ◽  
William W. Clark

Over the past several years, there has been increasing interest in harvesting energy from ambient vibrations in the environment by converting mechanical energy into electrical energy. A popular method is to use a piezoelectric cantilever beam. In order to harvest the most energy with the device, the beam's fundamental mode must be excited. However, this is not always possible due to manufacturing of the device or fluctuations in the vibration source. By being able to change the frequencies of the beam, the device can be more effective in harvesting energy. In this paper, a model for a three layered piezoelectric cantilever beam utilizing a shunt tuning circuit will be presented. The fundamental frequency of a cantilever beam is dependent on the stiffness and mass of the beam. Either adding a tip mass to the end of the beam or increasing the dimensions of the beam can alter the mass. The stiffness of the beam is a function of the geometry, mechanical properties, and the electromechanical coupling of the piezoelectric element. In this paper we prepare the use of a piezoelectric layer with an attached shunt circuit for tuning its stiffness, and thus the beam frequency. The piezoelectric coefficients of this layer and its shunt circuit determine the amount of electromechanical coupling. By varying the shunt circuit, the beam can be tuned to a certain frequency. This paper presents a study of the effects additional harvesting and tuning layers have on the amount of tuning and generated power in the beam. These additional layers will add more piezoelectric material as well as mass to the beam and therefore there will be a balance between the amount of harvested energy and the tunable frequency range. By quantifying the effects of these parameters, it will be easier to design a harvester to be used in a particular frequency range as well as to produce a certain level of power.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 141
Author(s):  
Pornrawee Thonapalin ◽  
Sontipee Aimmanee ◽  
Pitak Laoratanakul ◽  
Raj Das

Piezoelectric materials are used to harvest ambient mechanical energy from the environment and supply electrical energy via their electromechanical coupling property. Amongst many intensive activities of energy harvesting research, little attention has been paid to study the effect of the environmental factors on the performance of energy harvesting from laminated piezoelectric materials, especially when the temperature in the operating condition is different from the room temperature. In this work, thermomechanical effects on the electrical energy harvested from a type of laminated piezoelectric devices, known as thin layer unimorph ferroelectric driver (called THUNDER) were investigated. Three configurations of THUNDER devices were tested in a controlled temperature range of 30–80 °C. The THUNDER devices were pushed by using a cam mechanism in order to generate required displacements and frequencies. The experimental results exhibited a detrimental effect of the elevated temperature on the generated voltage and the harvested electrical power. It is due to changes in residual stress and geometry. These results are advantageous for many applications of the THUNDER devices and for future design of a new laminated piezoelectric sensor and energy harvester in an elevated temperature environment.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 397
Author(s):  
Yu-Chen Chang ◽  
Ying-Chung Chen ◽  
Bing-Rui Li ◽  
Wei-Che Shih ◽  
Jyun-Min Lin ◽  
...  

In this study, piezoelectric zinc oxide (ZnO) thin film was deposited on the Pt/Ti/SiNx/Si substrate to construct the FBAR device. The Pt/Ti multilayers were deposited on SiNx/Si as the bottom electrode and the Al thin film was deposited on the ZnO piezoelectric layer as the top electrode by a DC sputtering system. The ZnO thin film was deposited onto the Pt thin film by a radio frequency (RF) magnetron sputtering system. The cavity on back side for acoustic reflection of the FBAR device was achieved by KOH solution and reactive ion etching (RIE) processes. The crystalline structures and surface morphologies of the films were analyzed by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The optimized as-deposited ZnO thin films with preferred (002)-orientation were obtained under the sputtering power of 80 W and sputtering pressure of 20 mTorr. The crystalline characteristics of ZnO thin films and the frequency responses of the FBAR devices can be improved by using the rapid thermal annealing (RTA) process. The optimized annealing temperature and annealing time are 400 °C and 10 min, respectively. Finally, the FBAR devices with structure of Al/ZnO/Pt/Ti/SiNx/Si were fabricated. The frequency responses showed that the return loss of the FBAR device with RTA annealing was improved from −24.07 to −34.66 dB, and the electromechanical coupling coefficient (kt2) was improved from 1.73% to 3.02% with the resonance frequency of around 3.4 GHz.


2015 ◽  
Vol 787 ◽  
pp. 782-786 ◽  
Author(s):  
R. Prakash ◽  
D. Christopher ◽  
K. Kumarrathinam

The prime objective of this paper is to present the details of a thermoelectric waste heat energy recovery system for automobiles, more specifically, the surface heat available in the silencer. The key is to directly convert the surface heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC–DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Also the other face of the TEG will remain cold. Hence the skin burn out accidents can be avoided. The experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.


2021 ◽  
Vol 17 (2) ◽  
pp. 204-211
Author(s):  
Raheel Jawad ◽  
Rawaa Jawad ◽  
Zahraa Salman

In the present-day decade, the world has regarded an expansion in the use of non-linear loads. These a lot draw harmonic non-sinusoidal currents and voltages in the connection factor with the utility and distribute them with the useful resource of the overall performance of it. The propagation of these currents and voltages into the grids have an effect on the electricity constructions in addition to the one of various client equipment. As a result, the electrical strength notable has come to be critical trouble for each client and distributor of electrical power. Active electrical electricity filters have been proposed as environment splendid gear for electrical power pinnacle notch enchantment and reactive electrical strength compensation. Active Power Filters (APFs) have Flipped out to be a possible wish in mitigating the harmonics and reactive electrical electricity compensation in single-phase and three-phase AC electrical energy networks with Non-Linear Loads (NLLs). Conventionally, this paper applied Ant Colony Algorithm(ACO) for tuning PI and reduce Total Harmonic Distortion (THD). The result show reduces THD at 2.33%.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Zul Hasrizal Bohari ◽  
Nur Asyhikin Azhari ◽  
Nuraina Nasuha Ab Rahman ◽  
Mohamad Faizal Baharom ◽  
Mohd Hafiz Jali ◽  
...  

Energy trending lately shown the need of new possible renewable energy. This paper studies about the capability and capacity generating of electricity by using Bio-electricity-Microbial Fuel Cell (Bio-MFC). Bio-MFC is the device that converts chemical energy to electrical energy by using microbes that exist in the sewage water. The energy contained in organic matter can be converted into useful electrical power. MFC can be operated by microbes that transfer electrons from anode to cathode for generating electricity. There are two major goals in this study. The first goal is to determine the performance characteristics of MFCs in this application. Specifically we investigate the relationship between the percentages of organic matter in a sample results in higher electricity production of MFCs power by that sample. As a result, the sewage (wastewater) chosen in the second series experiment because the sewage (wastewater) also produced the highest percentage of organic matter which is around 10%. Due to these, the higher percentage of organic matter corresponds to higher electricity production. The second goal is to determine the condition under which MFC work most efficiently to generating electricity. After get the best result of the combination for the electrode, which is combination of zinc and copper (900mV),the third series of experiments was coducted, that show the independent variable was in the ambient temperature. The reasons of these observations will be explained throughout the paper. The study proved that the electricity production of MFC can be increased by selecting the right condition of sample type, temperature and type of electrode. 


Sign in / Sign up

Export Citation Format

Share Document