Electronic structure of Cd, In, Sn substitutional Defects in GaSe

2007 ◽  
Vol 994 ◽  
Author(s):  
Zsolt Rak ◽  
Subhendra D Mahanti ◽  
Krishna C Mandal ◽  
Nils C Fernelius

AbstractAb initio electronic structure calculations within density functional theory have been carried out in pure GaSe and GaSe doped with substitutional impurities (Cd, In and Sn) at the Ga site in order to understand the nature of the defect states and how they depend on the nominal valence of these three impurities. We find that Cd impurity introduces a defect state located between 0.1 – 0.18 eV above the valence band, in good agreement with photoluminescence peaks seen at 0.13 eV and 0.18 eV. Using both experimental and theoretical effective mass parameters we show that effective mass model fails to describe these acceptor states. Sn changes the single particle density of states (DOS) near the bottom of the conduction band, and gives rise to resonant states deep in the valence band. In, on the other hand, behaves like Ga, it does not make noticeable change in the DOS of the host GaSe crystal.

2013 ◽  
Vol 701 ◽  
pp. 125-130
Author(s):  
Salameh Ahmad

Myab initioelectronic structure calculations inRSn2n-1Te2n, n=16, R = a vacancy, Cd, and In show that when Sn atom is substituted by R, the Density of State (DOS) of the valence and conduction bands get strongly perturbed. There are significant changes near the band gap region. Sn vacancy causes very little change near the bottom of the conduction band DOS whereas there is an increase in the DOS near the top of the valence band. Results for In impurity shows that, unlike PbTe, the deep defect states in SnTe are resonant states near the top of the valence band. In PbTe these deep defect states lie in the band-gap region (act asn-type). This fundamental difference in the position of the deep defect states in SnTe and PbTe explains the experimental anomalies seen in the case of In impurities (act asn-type in PbTe andp-type in SnTe).


2009 ◽  
Vol 23 (19) ◽  
pp. 2339-2352 ◽  
Author(s):  
LI BIN SHI ◽  
SHUANG CHENG ◽  
RONG BING LI ◽  
LI KANG ◽  
JIAN WEI JIN ◽  
...  

Density of states and band structure of wurtzite ZnO are calculated by the CASTEP program based on density functional theory and plane-wave pseudopotential method. The calculations are carried out in axial and unaxial strains, respectively. The results of density of states in different strains show that the bottom of the conduction band is always dominated by Zn 4s, and the top of valence band is always dominated by O 2p. The variation of the band gap calculated from band structure is also discussed. In addition, p-d repulsion is used in investigating the variation of the top of the valence band in different strains and the results can be verified by electron density difference.


2005 ◽  
Vol 864 ◽  
Author(s):  
Salameh Ahmad ◽  
Daniel Bilc ◽  
S.D. Mahanti ◽  
M.G. Kanatzidis

AbstractAb initioelectronics structure calculations have been carried out in a series of RPb2n-1Te2n, n=16, compounds to understand the nature of “defect” states introduced by R where R = vacancy, monovalent Na, K, Rb, Cs, Ag atoms and divalent Cd atoms. We find that the density of states (DOS) near the top of the valence band and the bottom of the conduction band get significantly modified. The Na atom seems to perturb this region least (ideal acceptor in PbTe) and the other monovalent atoms enhance the DOS near the top of the valence band. Cd is an interesting case, since it introduces a strong resonance state near the bottom of the conduction band.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Hamsa Naji Nasir ◽  
Mudar A. Abdulsattar ◽  
Hayder M. Abduljalil

Two methods are used to simulate electronic structure of gallium arsenide nanocrystals. The cluster full geometrical optimization procedure which is suitable for small nanocrystals and large unit cell that simulates specific parts of larger nanocrystals preferably core part as in the present work. Because of symmetry consideration, large unit cells can reach sizes that are beyond the capabilities of first method. The two methods use ab initio Hartree-Fock and density functional theory, respectively. The results show that both energy gap and lattice constant decrease in their value as the nanocrystals grow in size. The inclusion of surface part in the first method makes valence band width wider than in large unit cell method that simulates the core part only. This is attributed to the broken symmetry and surface passivating atoms that split surface degenerate states and adds new levels inside and around the valence band. Bond length and tetrahedral angle result from full geometrical optimization indicate good convergence to the ideal zincblende structure at the centre of hydrogenated nanocrystal. This convergence supports large unit cell methodology. Existence of oxygen atoms at nanocrystal surface melts down density of states and reduces energy gap.


Computation ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 66 ◽  
Author(s):  
T. S. Müller ◽  
W. Töws ◽  
G. M. Pastor

Recent developments in the density-functional theory of electron correlations in many-body lattice models are reviewed. The theoretical framework of lattice density-functional theory (LDFT) is briefly recalled, giving emphasis to its universality and to the central role played by the single-particle density-matrix γ . The Hubbard model and the Anderson single-impurity model are considered as relevant explicit problems for the applications. Real-space and reciprocal-space approximations to the fundamental interaction-energy functional W [ γ ] are introduced, in the framework of which the most important ground-state properties are derived. The predictions of LDFT are contrasted with available exact analytical results and state-of-the-art numerical calculations. Thus, the goals and limitations of the method are discussed.


2012 ◽  
Vol 198-199 ◽  
pp. 23-27
Author(s):  
Nan Zhang ◽  
Hong Sheng Zhao ◽  
Dong Yang ◽  
Wen Jie Yan

Based upon the density functional theory (DFT) in this paper, the first-principles approach is used to study the electronic structure of different cross-sectional diameters of ZnO [0001] nanowires of wurtzite structure. The results show that ZnO [0001] nanowires have a wide direct band gap. Located in the G-point of the Brillouin zone the conduction band minimum and valence band maximum are relatively smooth. The conduction band is mainly composed of Zn 4s and Zn 4p states, and the valence band is composed of Zn 3d and O 2p states. The effective mass of conduction band electrons and valence band holes are large while their mobility is very low which show that conductive ability of pure defect-free [0001] ZnO nanowires is weak. Along with the increase of the cross-sectional diameters, the band gap gradually decreases that indicates quantum size effects are obvious in the nano size range.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5765
Author(s):  
Bonaventure A. Odeke ◽  
Gyang D. Chung ◽  
Jesutofunmi A. Fajemisin ◽  
Kabir S. Suraj ◽  
Denis K. Tonui ◽  
...  

Considering the significance of hexagonal copper thiocyanate (β-CuSCN) in several optoelectronic technologies and applications, it is essential to investigate its electronic structure and surface properties. Herein, we have employed density functional theory (DFT) calculations to characterise the band structure, density of states, and the energy-dependent X-ray photoelectron (XPS) valence band spectra at variable excitation energies of β-CuSCN. The surface properties in the absence and presence of dimethyl sulfoxide (DMSO), a solvent additive for improving perovskite solar cells’ power conversion efficiency, have also been systematically characterised. β-CuSCN is shown to be an indirect band gap material (Eg = 3.68 eV) with the valence band edge demonstrated to change from being dominated by Cu-3d at soft X-ray ionisation photon energies to Cu-3p at hard X-ray ionisation photon energies. The adsorption energy of dimethyl sulfoxide (DMSO) on the (100) and (110) β-CuSCN surfaces is calculated at −1.12 and −0.91 eV, respectively. The presence of DMSO on the surface is shown to have a stabilisation effect, lowering the surface energy and tuning the work function of the β-CuSCN surfaces, which is desirable for organic solar cells to achieve high power conversion efficiencies.


Sign in / Sign up

Export Citation Format

Share Document