Effects Of Grain Boundaries on the Resistivity of Cosputtered Wsi2 Films

1981 ◽  
Vol 10 ◽  
Author(s):  
D. R. Campbell ◽  
S. Mader ◽  
W. K. Chu

ABSTRACTResistivity and grain size measurements on thin films of co-sputtered WSi2 show that the resistivity in this material is dominated by grain boundary scattering. The reflection coefficient for the transport of charge carriers through the grain boundaries was determined to be approximately 0.9.

2020 ◽  
Vol 58 (10) ◽  
pp. 715-720
Author(s):  
Dooho Choi

In this study, the critical role of substrate bias during the sputter deposition of Al thin films is discussed. Two sets of Al thin films having a nominal thickness of 300 nm were deposited at sputtering pressures of 4.1 and 1.5 mTorr, respectively, with an applied negative substrate bias in the range of 0-200 V. It was found that the microstructure, surface roughness, film resistivity and grain size were greatly altered by the combination of bias magnitudes and sputtering pressures. The sputtering pressure of 4.1 mTorr resulted in greater changes in the film properties with the application of substrate bias, and a lesser but still significant degree was observed for the films deposited at 1.5 mTorr. The resistivity values for the films deposited at 1.5 mTorr were found to be significantly lower, with the lowest resistivity value of 3.1 µΩcm achieved at a substrate bias of 50 V. Based on grain size measured by the line intercept method and MayadasShatzkes grain boundary scattering model, the resistivity contribution of grain boundary scattering for the lowest-resistivity film was found to be 0.37 µΩcm, which indicates that the film resistivity in the optimized condition is close to the known bulk resistivity of 2.65 µΩcm.


2015 ◽  
Vol 21 (4) ◽  
pp. 927-935 ◽  
Author(s):  
Matthew M. Nowell ◽  
Michael A. Scarpulla ◽  
Naba R. Paudel ◽  
Kristopher A. Wieland ◽  
Alvin D. Compaan ◽  
...  

AbstractThe performance of polycrystalline CdTe photovoltaic thin films is expected to depend on the grain boundary density and corresponding grain size of the film microstructure. However, the electrical performance of grain boundaries within these films is not well understood, and can be beneficial, harmful, or neutral in terms of film performance. Electron backscatter diffraction has been used to characterize the grain size, grain boundary structure, and crystallographic texture of sputtered CdTe at varying deposition pressures before and after CdCl2 treatment in order to correlate performance with microstructure. Weak fiber textures were observed in the as-deposited films, with (111) textures present at lower deposition pressures and (110) textures observed at higher deposition pressures. The CdCl2-treated samples exhibited significant grain recrystallization with a high fraction of twin boundaries. Good correlation of solar cell efficiency was observed with twin-corrected grain size while poor correlation was found if the twin boundaries were considered as grain boundaries in the grain size determination. This implies that the twin boundaries are neutral with respect to recombination and carrier transport.


2007 ◽  
Vol 990 ◽  
Author(s):  
Hideki Kitada ◽  
Takashi Suzuki ◽  
Takahiro Kimura ◽  
Tomoji Nakamura

ABSTRACTWe investigated the copper grain size dependence on the interconnect line height using the EBSD (Electron Back Scattering Diffraction) pattern method. In our grain size measurements, we excluded the twin boundaries because of its small contribution to the electron scattering. Our experiments showed that the average grain size of a 70 nm-high line was about 24% smaller than for a 190 nm-high line.We estimated the grain boundary scattering components by the Fuchs-Sondheimer (FS) and the Mayadas-Shatzkes (MS) models including the line height dependence of the grain size parameter (d). In order to evaluate precisely the influence of height dependence of grain size in the FS and MS models, we also determined the surface scattering coefficient of the Ta/Cu and SiC/Cu interfaces by an independent experiment.From this, we found that grain boundary scattering components became approximately 32% larger for the 70 nm-wide line when the line height dependence of the grain size was taken into consideration.


2014 ◽  
Vol 32 (6) ◽  
pp. 061503 ◽  
Author(s):  
Katayun Barmak ◽  
Amith Darbal ◽  
Kameswaran J. Ganesh ◽  
Paulo J. Ferreira ◽  
Jeffrey M. Rickman ◽  
...  

2015 ◽  
Vol 107 (19) ◽  
pp. 192102 ◽  
Author(s):  
Janne-Petteri Niemelä ◽  
Yasushi Hirose ◽  
Kei Shigematsu ◽  
Masahito Sano ◽  
Tetsuya Hasegawa ◽  
...  

1997 ◽  
Vol 495 ◽  
Author(s):  
Alan R. Krauss ◽  
Dieter M. Gruen ◽  
Daniel Zhou ◽  
Thomas G. Mccauley ◽  
Lu Chang Qin ◽  
...  

ABSTRACTNanocrystalline diamond thin films have been produced by microwave plasma-enhanced chemical vapor deposition (MPECVD) using C60/Ar/H2 or CH4/Ar/H2 plasmas. Films grown with H2 concentration ≤ 20% are nanocrystalline, with atomically abrupt grain boundaries and without observable graphitic or amorphous carbon phases. The growth and morphology of these films are controlled via a high nucleation rate resulting from low hydrogen concentration in the plasma. Initial growth is in the form of diamond, which is the thermodynamic equilibrium phase for grains < 5 nm in diameter. Once formed, the diamond phase persists for grains up to at least 15–20 nm in diameter. The renucleation rate in the near-absence of atomic hydrogen is very high (∼1010 cm2sec−1), limiting the average grain size to a nearly constant value as the film thickness increases, although the average grain size increases as hydrogen is added to the plasma. For hydrogen concentrations less than ∼20%, the growth species is believed to be the carbon dimer, C2, rather than the CH3* growth species associated with diamond film growth at higher hydrogen concentrations. For very thin films grown from the C60 precursor, the threshold field (2 to ∼60 volts/micron) for cold cathode electron emission depends on the electrical conductivity and on the surface topography, which in turn depends on the hydrogen concentration in the plasma. A model of electron emission, based on quantum well effects at the grain boundaries is presented. This model predicts promotion of the electrons at the grain boundary to the conduction band of diamond for a grain boundary width ∼3–4 Å, a value within the range observed by TEM.


2018 ◽  
Vol 5 (6) ◽  
pp. 1701411 ◽  
Author(s):  
Max Kneiß ◽  
Chang Yang ◽  
José Barzola-Quiquia ◽  
Gabriele Benndorf ◽  
Holger von Wenckstern ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document