Characterisation of PZT in Thin Film Bulk Acoustic Wave Resonators

2008 ◽  
Vol 1075 ◽  
Author(s):  
Janine Conde ◽  
Paul Muralt

ABSTRACTPb(Zr0.53, Ti0.47)O3 (PZT) thin films are potentially interesting as piezoelectric layer in bulk acoustic wave (BAW) resonators. We investigated properties and performance of {111} and {100} textured, dense films deposited by sol-gel techniques in the frequency range of 1 to 2 GHz. The resonators were fabricated on Si wafers using deep silicon etching to create a membrane structure and using platinum as top and bottom electrodes. The best response of the resonators was observed at a bias voltage of −15kV/cm with values of around 10% for the coupling constant and around 50 for the quality factor. This voltage corresponds to the maximal value of the piezoelectric constant d33 and minimal value of the dielectric permittivity measured as a function of the electric field. Resonance and antiresonance frequencies were strongly influenced by a bias voltage, showing a hysteretic behaviour as expected for ferroelectrics. Both of these frequencies shifted in the same direction. As a consequence, the dc voltage can be potentially used to shift the whole band of a filter. In unipolar operation, the coupling constant could be varied from 6 to 10 %. Materials parameters were extracted from the admittance as a function of frequency. Dielectric, piezoelectric and elastic properties of textured PZT films are reported and compared to direct (low frequency) measurements and to literature values. It was found that PZT thin films have lower stiffness than the one of PZT bulk ceramics and it was observed that {111}-textured films are stiffer than {100}-textured films.

AIP Advances ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 075002
Author(s):  
Xiaoyuan Bai ◽  
Yao Shuai ◽  
Lu Lv ◽  
Ying Xing ◽  
Jiaoling Zhao ◽  
...  

1994 ◽  
Vol 361 ◽  
Author(s):  
Chang Jung Kim ◽  
Dae Sung Yoon ◽  
Joon Sung Lee ◽  
Chaun Gi Choi ◽  
Won Jong Lee ◽  
...  

ABSTRACTThe (100), (111) and randomly oriented PZT thin films were fabricated on Pt/Ti/Coming 7059 glass using sol-gel method. The thin films having different orientation were fabricated by different drying conditions for pyrolysis. The preferred orientations of the PZT thin films were observed using XRD, rocking curves, and pole figures. The microstructures were investigated using SEM. The hysteresis loops and capacitance-voltage characteristics of the films were investigated using a standardized ferroelectric test system. The dielectric constant and current-voltage characteristics of the films were investigated using an impedance analyzer and pA meter, respectively. The films oriented in a particular direction showed superior electrical characteristics to the randomly oriented films.


1997 ◽  
Vol 493 ◽  
Author(s):  
Seung-Hyun Kim ◽  
J. G. Hong ◽  
J. C. Gunter ◽  
H. Y. Lee ◽  
S. K. Streiffer ◽  
...  

ABSTRACTFerroelectric PZT thin films on thin RuO2 (10, 30, 50nm)/Pt hybrid bottom electrodes were successfully prepared by using a modified chemical solution deposition method. It was observed that the use of a lOnm RuO2Pt bottom electrode reduced leakage current, and gave more reliable capacitors with good microstructure compare to the use of thicker RuO2/Pt bottom electrodes. Typical P-E hysteresis behavior was observed even at an applied voltage of 3V, demonstrating greatly improved remanence and coercivity. Fatigue and breakdown characteristics, measured at 5V, showed stable behavior, and only below 13-15% degradation was observed up to 1010 cycles. Thicker RuO2 layers resulted in high leakage current density due to conducting lead ruthenate or PZT pyrochlore-ruthenate and a rosette-type microstructure.


2008 ◽  
Vol 20 (1) ◽  
pp. 303-307 ◽  
Author(s):  
Mark D. Losego ◽  
Jon F. Ihlefeld ◽  
Jon-Paul Maria

2009 ◽  
Vol 15 (S3) ◽  
pp. 53-54
Author(s):  
Aiying Wu ◽  
P. M. Vilarinho

AbstractLead zirconate - lead titanate (PZT) materials are commercially important piezoelectric and ferroelectrics in a wide range of applications, such as data storage (dynamic access and ferroelectric random access memories) and sensing and actuating devices. PZT with the morphotropic phase boundary composition offers the highest piezoelectric response and at the present there are no fullydeveloped alternative materials to PZT. The importance of PZT associated with the continuous requirements of device miniaturization, imposes the development of high quality PZT thin films with optimized properties. Concomitantly due to the dependence of the final properties of thin films on the details of the microstructure a thoroughly analysis at the local scale of their microstructure is necessary. Sol-gel method, is one of the Chemical Solution Deposition techniques used to prepare oxide thin films, such as PZT. Starting from a solution, a solid network is progressively formed via inorganic polymerisation reactions. Most metal alkoxides used for sol-gel synthesis are highly reactive towards hydrolysis and condensation. Therefore their chemical reactivity has to be tailored via the chemical modification (or complexation) of metal alkoxides to avoid uncontrolled reactions and precipitation. For PZT sol gel thin film preparation, two chemical routes are frequently used depending on the nature of the molecular precursor, namely methotoxyethanol (MOE) route and diol-route.


2010 ◽  
Vol 663-665 ◽  
pp. 650-653
Author(s):  
Jin Moo Byun ◽  
Jeong Sun Han ◽  
Jae Hyoung Park ◽  
Seong Eui Lee ◽  
Hee Chul Lee

This study examined the effect of crystalline orientation and dopants such as Nb and Zn on the piezoelectric coefficient of sol-gel driven Pb1(Zr0.52Ti0.48)O3(PZT) and doped PZT thin films. Crack-free 1-μm-thick PZT and doped PZT thin films prepared by using 2-Methoxyethanol-based sol-gel method were fabricated on Pt/Ti/SiO2/Si substrates. The highly (111) oriented PZT thin films of pure perovskite structure could be obtained by controlling various parameters such as a PbTiO3 seed layer and a concentration of sol-gel solution. The Nb-Zn doped PZT thin films exhibited high piezoelectric coefficient which was about 50 % higher than that of undoped PZT thin film. The highest measured piezoelectric coefficient was 240 pC/N, which could be applicable to piezoelectrically operated MEMS actuator, sensor, or energy harvester devices.


1992 ◽  
Vol 1 (2-4) ◽  
pp. 293-304 ◽  
Author(s):  
H. Watanabe ◽  
T. Mihara ◽  
C. A. Paz De Araujo

2015 ◽  
Vol 63 (8) ◽  
pp. 3335-3344 ◽  
Author(s):  
Zhi Yao ◽  
Yuanxun Ethan Wang ◽  
Scott Keller ◽  
Gregory P. Carman

Sign in / Sign up

Export Citation Format

Share Document