Simulations of an Interface Crack Nucleation During Nanoindentaion : Molecular Dynamics and Finite Element Coupling Approach

2008 ◽  
Vol 1086 ◽  
Author(s):  
Shotaro Hara ◽  
Satoshi Izumi ◽  
Shinsuke Sakai ◽  
Yoshiyuki Eguchi ◽  
Tomio Iwasaki

AbstractWe carried out the nanoindentation simulations for the Ru (superlayer) / Cu (film) / SiO2 (substrate) system using the finite temperature MD-FEM coupling method. The calculations are performed for the different adhesion energies of Cu/SiO2 ranging from 0.2 to 0.6 J/m2. During loading, it was found that the interfacial crack nucleation occurs at three to four times the contact radius, driven by the tensile stress acted on the Cu/SiO2 interface. We also show that the asymmetric defect behavior have a great effect on giving birth to the crack nucleation. The observation of our simulation indicates that the mechanism of the crack nucleation strongly depends on the interfacial bonding energy.

2015 ◽  
Vol 142 (10) ◽  
pp. 104105 ◽  
Author(s):  
Shengyuan Liu ◽  
Alf Gerisch ◽  
Mohammad Rahimi ◽  
Jens Lang ◽  
Michael C. Böhm ◽  
...  

2021 ◽  
Vol 33 (3) ◽  
pp. 04021008
Author(s):  
Zhao Du ◽  
Xingyi Zhu ◽  
Feng Li ◽  
Siqi Zhou ◽  
Ziwei Dai

Author(s):  
Van-Trang Nguyen ◽  
Minh-Quy Le

We study through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of (0, 24) armchair and (31, 0) zigzag black phosphorene nanotubes with approximately equal diameters. Young's modulus, critical stress and critical strain are estimated with various tube lengths. It is found that under uniaxial compression the (0, 24) armchair black phosphorene nanotube buckles, whereas the failure of the (31, 0) zigzag one is caused by local bond breaking near the boundary.


2011 ◽  
Vol 378-379 ◽  
pp. 7-10
Author(s):  
Gui Xue Bian ◽  
Yue Liang Chen ◽  
Jian Jun Hu ◽  
Li Xu

Molecular dynamics simulation was used to simulate the tension process of purity and containing impurity metal aluminum. Elastic constants of purity and containing impurity metal aluminum were calculated, and the effects of impurity on the elastic constants were also studied. The results show that O-Al bond and Al-Al bond near oxygen atoms could be the sites of crack nucleation or growth under tensile load, the method can be extended to research mechanical properties of other metals and alloys structures.


2011 ◽  
Vol 03 (01n02) ◽  
pp. 39-47 ◽  
Author(s):  
R. NEUGEBAUER ◽  
R. WERTHEIM ◽  
U. SEMMLER

On cutting tools for high performance cutting (HPC) processes or for hard-to-cut materials, there is an increased importance in so-called superlattice coatings with hundreds of layers each of which is only a few nanometers in thickness. Homogeneity or average material properties based on the properties of single layers are not valid in these dimensions any more. Consequently, continuum mechanical material models cannot be used for modeling the behavior of nanolayers. Therefore, the interaction potentials between the single atoms should be considered. A new, so-called atomic finite element method (AFEM) is presented. In the AFEM the interatomic bonds are modeled as nonlinear spring elements. The AFEM is the connection between the molecular dynamics (MD) method and the crystal plasticity FEM (CPFEM). The MD simulates the atomic deposition process. The CPFEM considers the behavior of anisotropic crystals using the continuum mechanical FEM. On one side, the atomic structure data simulated by MD defines the interface to AFEM. On the other side, the boundary conditions (displacements and tractions) of the AFEM model are interpolated from the CPFEM simulations. In AFEM, the lattice deformation, the crack and dislocation behavior can be simulated and calculated at the nanometer scale.


2021 ◽  
Author(s):  
Junqing Xue ◽  
Dong Xu ◽  
Yufeng Tang ◽  
Bruno Briseghella ◽  
Fuyun Huang ◽  
...  

<p><br clear="none"/></p><p>The vulnerability problem of expansion joints could be fundamentally resolved using the concept of jointless bridges. The longitudinal deformation of the superstructure can be transferred to the backfill by using the approach slab. The flat buried approach slab (FBAS) has been used in many jointless bridges in European countries. In order to understand the mechanical performance of FBAS and soil deformation, a finite element model (FEM) was implemented in PLAXIS. Considering the friction between the FBAS and soil, the buried depth, the FBAS length and thickness as parameters, a parametric analysis was carried out. According to the obtained results and in order to reduce the soil deformation above the FBAS, it is suggested to increase the friction between the FBAS and sandy soil, and the buried depth of FBAS. Moreover, it should be paid attention to the vertical soil deformation and the concrete tensile stress of FBAS in pulling condition.</p>


2017 ◽  
Vol 129 ◽  
pp. 1-12 ◽  
Author(s):  
Shengyuan Liu ◽  
Sebastian Pfaller ◽  
Mohammad Rahimi ◽  
Gunnar Possart ◽  
Paul Steinmann ◽  
...  

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5661-5666
Author(s):  
SHINIL KIM ◽  
CHENG LU ◽  
XIAOZHONG DU ◽  
ANH KIET TIEU

In this paper an explicit dynamic finite element method model has been developed to investigate the strip deformation behavior between two adjacent stands in hot finishing mill. The effect of the roll speed ratio of second stand to first stand on tension and the tailing behavior of the strip has been discussed in details. It has been found that the strip accumulation occurs if the roll speed ratio is small. The tensile stress increases with the roll speed ratio. During the tailing process the accumulated strip caused by the small roll speed ratios knocks onto the roll, while the swing of the strip tail occurs for the large roll speed ratios and it strikes the roll as well. Both tailing phenomena will result in the strip tail pincher or roll damage in the real operation.


Sign in / Sign up

Export Citation Format

Share Document