Towards Heterogeneous Biodegradable Nanorods for Controlled Drug Delivery

2008 ◽  
Vol 1138 ◽  
Author(s):  
Shelley Dougherty ◽  
Jianyu Liang

AbstractHeterogeneous, one-dimensional (1D) nanomaterials, such as nanorods and nanowires, have been utilized for a variety of different biomedical applications because they offer a unique combination of properties and provide a material platform for integrating multiple functions. In this paper, we propose a template-assisted wetting approach to fabricate segmented polymer nanorods using biodegradable polymers for controlled drug delivery. Our previous work with polystyrene (PS) and poly(methyl methacrylate) (PMMA) heterogeneous, segmented nanorods is described briefly to introduce our current preliminary work with the fabrication of homogeneous biodegradable nanorods and drug release from polymer thin films. Since the template-assisted fabrication approach provides us unprecedented control over the size, spacing, and length of the heterogeneous polymer nanorods, this technique will provide for the opportunity to evaluate drug release kinetics as a function of the segment spacing, size of the nanorods, and aspect ratio in the future.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1030
Author(s):  
Fan Xie ◽  
Pieter De Wever ◽  
Pedro Fardim ◽  
Guy Van den Mooter

The development of controlled drug delivery systems based on bio-renewable materials is an emerging strategy. In this work, a controlled drug delivery system based on mesoporous oxidized cellulose beads (OCBs) was successfully developed by a facile and green method. The introduction of the carboxyl groups mediated by the TEMPO(2,2,6,6-tetramethylpiperidine-1-oxyradical)/NaClO/NaClO2 system presents the pH-responsive ability to cellulose beads, which can retain the drug in beads at pH = 1.2 and release at pH = 7.0. The release rate can be controlled by simply adjusting the degree of oxidation to achieve drug release at different locations and periods. A higher degree of oxidation corresponds to a faster release rate, which is attributed to a higher degree of re-swelling and higher hydrophilicity of OCBs. The zero-order release kinetics of the model drugs from the OCBs suggested a constant drug release rate, which is conducive to maintaining blood drug concentration, reducing side effects and administration frequency. At the same time, the effects of different model drugs and different drug-loading solvents on the release behavior and the physical state of the drugs loaded in the beads were studied. In summary, the pH-responsive oxidized cellulose beads with good biocompatibility, low cost, and adjustable release rate have shown great potential in the field of controlled drug release.


2009 ◽  
Vol 1 (3) ◽  
pp. 539-550 ◽  
Author(s):  
Moharram A. Khan ◽  
Shafeeq. T

Controlled drug delivery occurs when a polymer or lipid (natural or synthetic) is judiciously combined with a drug or other active agent in such a way that the active agent is released from the material in a pre-designed manner. The aim of controlling the drug delivery is to achieve more effective therapies while eliminating potential for both under- and overdosing. Controlled delivery systems includes the maintenance of drug levels within a desired range, the need for fewer administrations, optimal use of the drug in question, and increased patient compliance. Mathematical modeling of controlled drug delivery can help to provide a scientific knowledge base concerning the mass transport mechanisms that are involved in the control of drug release. Mathematically, it is identified for designing a particular pharmaceutical system and it can be used to simulate the effect of the device design parameters (viz., geometry and composition) on the resulting drug release kinetics. The objective of this review outlines the application of mathematical modeling to the controlled drug delivery mechanisms, focusing particular attention on drug transport in human breast cancer, treated with the drug Doxorubicin. Keywords: Controlled drug delivery; Diffusion; Doxorubicin; Mathematical Modeling; Release Kinetics.© 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.v1i3.2581              J. Sci. Res. 1 (3), 539-550 (2009) 


Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Tilak R. Bhardwaj ◽  
Rajesh K. Singh

Aims: In the present study, polymer-drug conjugates were synthesized based on azo-bond cleavage drug delivery approach for targeting erlotinib as anticancer drug specifically to the colon for the proficient treatment of colon cancer. Background: Colon cancer (CC) is the third commonly detected tumor worldwide and it make up about 10 % of all cases of cancers. Most of the chemotherapeutic drugs available for treating colon cancer are not only toxic to cancerous cells but also to the normal healthy cells. Among the various approaches to get rid of the adverse effects of anticancer agents, prodrugs are one of the most imperative approaches. Objective: The objective of the study is to chemically modify the erlotinib drug through azo-bond linkage and suitable spacer which will be finally linked to polymeric backbone to give desired polymer linked prodrug. The azo reductase enzyme present in colon is supposed to cleave the azo-bond specifically and augment the drug release at the colon. Methods: The synthesized conjugates were characterized by IR and 1H-NMR spectroscopy. The cleavage of aromatic azobond resulted in a potential colon-specific liberation of drug from conjugate studied in rat fecal contents. In vitro release profiles of polyphosphazene-linked conjugates of erlotinib have been studied at pH 1.2, pH 6.8 and pH 7.4. The stability study was designed to exhibit that free drug was released proficiently and unmodified from polyphosphazene-erlotinib conjugates having aromatic azo-bond in artificial colon conditions. Results: The synthesized conjugates were demonstrated to be stable in simulated upper gastro-intestinal tract conditions. The drug release kinetics shows that all the polymer-drug conjugates of erlotinib follow zero-order release kinetics which indicates that the drug release from the polymeric backbone is independent of its concentration. Kinetic study of conjugates with slope (n) shows the anomalous type of release with an exponent (n) > 0.89 indicating a super case II type of release. Conclusion: These studies indicate that polyphosphazene linked drug conjugates of erlotinib could be the promising candidates for the site-specific treatment of colon cancer with least detrimental side-effects.


2020 ◽  
Vol 11 (19) ◽  
pp. 3296-3304
Author(s):  
Jinkang Dou ◽  
Ruiqi Yang ◽  
Kun Du ◽  
Li Jiang ◽  
Xiayun Huang ◽  
...  

Ultrasound-controlled drug release is a very promising technique for controlled drug delivery due to the unique advantages of ultrasound as the stimulus.


2019 ◽  
Vol 225 ◽  
pp. 122-132 ◽  
Author(s):  
Hany El-Hamshary ◽  
Mohamed H. El-Newehy ◽  
Meera Moydeen Abdulhameed ◽  
Ayman El-Faham ◽  
Abeer S. Elsherbiny

2018 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Bhawana Sethi ◽  
Rupa Mazumder

Objective: The present work was aimed at preparation of transdermal patches by a solvent casting method using a varying concentration of polymers i.e. methocel (K15 and K100), ethocel (4 and 10), gelatin, chitosan, eudragit (RL and RS) grade using plasticizer (glycerin and propylene glycol).Methods: The ratio of drug to polymers and plasticizer was varied and the effect of formulation variables was studied. Prepared transdermal patches were evaluated for physicochemical properties, in-vitro permeation studies, content uniformity, primary skin irritation studies and FT-IR studies.Results: The formulated transdermal patch by using Methocel K 100 M showed good physical properties. The average weight of patches prepared using glycerin as a plasticizer were ranged from 42.33-67.00 mg and propylene glycol as a plasticizer were ranged from 40.67-67.67 mg. The percentage moisture absorption varies from 1.76 to 10.73 for patches formulated using glycerin and 2.28 to 7.97 for propylene glycol patches. The percentage moisture loss from patches prepared using glycerin was ranged from 2.75 to 11.54 and 2.87 to 12.02 from propylene glycol. The water vapour transmission rate from patches prepared using glycerin was ranged from 0.25 to 0.92 and 0.41 to 1.76. The formulated patch showed the acceptable quantity of medicament ranged from (100.20-101.05%). This result met the test content uniformity as per BP (85% to 115%). According to that, the drug was consistent throughout the patches. The formulation PGD is considered as the best formulation, since it shows a maximum in vitro drug release as 43.75 % at 24 h. The drug release kinetics studied showed that the majority of formulations was following zero order.Conclusion: In conclusion, controlled release transdermal drug delivery system patches of aliskiren can be prepared using polymer combinations, with a different plasticizer. The release rate of drug depends upon the polymer. However, release kinetics followed zero order.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 369 ◽  
Author(s):  
Seok Park ◽  
Min Kim ◽  
Seung-Ki Baek ◽  
Jung-Hwan Park ◽  
Seong-O Choi

In this study we present polymeric microneedles composed of multiple layers to control drug release kinetics. Layered microneedles were fabricated by spraying poly(lactic-co-glycolic acid) (PLGA) and polyvinylpyrrolidone (PVP) in sequence, and were characterized by mechanical testing and ex vivo skin insertion tests. The compression test demonstrated that no noticeable layer separation occurred, indicating good adhesion between PLGA and PVP layers. Histological examination confirmed that the microneedles were successfully inserted into the skin and indicated biphasic release of dyes incorporated within microneedle matrices. Structural changes of a model protein drug, bovine serum albumin (BSA), in PLGA and PVP matrices were examined by circular dichroism (CD) and fluorescence spectroscopy. The results showed that the tertiary structure of BSA was well maintained in both PLGA and PVP layers while the secondary structures were slightly changed during microneedle fabrication. In vitro release studies showed that over 60% of BSA in the PLGA layer was released within 1 h, followed by continuous slow release over the course of the experiments (7 days), while BSA in the PVP layer was completely released within 0.5 h. The initial burst of BSA from PLGA was further controlled by depositing a blank PLGA layer prior to forming the PLGA layer containing BSA. The blank PLGA layer acted as a diffusion barrier, resulting in a reduced initial burst. The formation of the PLGA diffusion barrier was visualized using confocal microscopy. Our results suggest that the spray-formed multilayer microneedles could be an attractive transdermal drug delivery system that is capable of modulating a drug release profile.


2020 ◽  
Vol 44 (17) ◽  
pp. 7175-7185 ◽  
Author(s):  
Varun Prasath Padmanabhan ◽  
Subha Balakrishnan ◽  
Ravichandran Kulandaivelu ◽  
Sankara Narayanan T. S. N. ◽  
Muthukrishnan Lakshmipathy ◽  
...  

In this work, nanospherical hydroxyapatite (HAP) was prepared that has combined properties of controlled drug delivery, biocompatibility, and antibacterial activity to have applications in the biomedical sector.


Sign in / Sign up

Export Citation Format

Share Document