Growth of Cu-Rich/Poor CuInS2 thin films by the sequential modulated flux deposition technique

2009 ◽  
Vol 1165 ◽  
Author(s):  
Alberto Bollero ◽  
Maarja Grossberg ◽  
Taavi Raadik ◽  
Juan Francisco Trigo ◽  
José Herrero ◽  
...  

AbstractCuInS2 has emerged during recent years as a good candidate to substitute CuInSe2 as polycrystalline absorber in thin film solar cells, mainly due to its direct band gap energy of 1.5 eV. In this study, absorber layers of both Cu-rich and Cu-poor types have been grown on soda-lime glass substrates by proper selection of the deposition parameters. The morphology and the optical properties of the resulting CuInS2 films were studied in dependence of the deposition order of the elemental constituents: alternate evaporation of the precursors, simultaneous deposition of the three constituents and sequential modulation of the evaporation fluxes.

2014 ◽  
Vol 1670 ◽  
Author(s):  
Antony Jan ◽  
Yesheng Yee ◽  
Bruce M. Clemens

ABSTRACTThin-film absorber layers for photovoltaics have attracted much attention for their potential for low cost per unit power generation, due both to reduced material consumption and to higher tolerance for defects such as grain boundaries. Cu2ZnGeSe4 (CZGSe) comprises one such material system which has a near-optimal direct band gap of 1.6 eV for absorption of the solar spectrum, and is made primarily from earth-abundant elements.CZGSe metallic precursor films were sputtered from Cu, Zn, and Ge onto Mo-coated soda lime glass substrates. These were then selenized in a two-zone close-space sublimation furnace using elemental Se as the source, with temperatures in the range of 400 to 500 C, and at a variety of background pressures. Films approximately 1-1.5 µm thick were obtained with the expected stannite crystal structure.Next, Cu2ZnSnSe4 (CZTSe), which has a direct band gap of 1.0 eV, was prepared in a similar manner and combined with CZGSe as either compositionally homogeneous or layered absorbers. The compositional uniformity of selenide absorbers made by selenizing compositionally homogeneous Cu-Zn-Ge-Sn precursor layers was determined and the band gap as a function of composition was investigated in order to demonstrate that the band gap is tuneable for a range of compositions. For layered Cu-Zn-Ge/Cu-Zn-Sn precursor films, the composition profile was measured before and after selenization to assess the stability of the layered structure, and its applicability for forming a band-gap-graded device for improved current collection.


2002 ◽  
Vol 09 (05n06) ◽  
pp. 1671-1674
Author(s):  
G. GORDILLO ◽  
F. LANDAZÁBAL

CuInSe 2 thin films were deposited on soda lime glass substrates following a two-stage process which includes a chemical reaction between thin films of Cu and In x Se y, followed by thermal annealing in a Se environment. Initially, the Cu layer is deposited on the glass substrate by DC magnetron sputtering in the S-gun configuration, and subsequently the In x Se y layer is deposited by the closed spaced sublimation (CSS) method. The influence of the deposition method and of the main deposition parameters of the precursor layers (Cu and In x Se y) on the phases present in the resulting compound were studied by means of X-ray diffraction (XRD) and optical gap (Eg) measurements. The conditions for growing CuInSe 2 thin films in the chalcopyrite phase were determined through an exhaustive parameter study. The study revealed that the thickness of the precursor layers and the selenization conditions affect the phase in which the CuInSe 2 compound grows.


2004 ◽  
Vol 836 ◽  
Author(s):  
Ki-Hyun Kim ◽  
Young-Gab Chun ◽  
Byung-Ok Park ◽  
Kyung-Hoon Yoon

ABSTRACTCIGS nanoparticles for the CIGS absorber layer have been synthesized by low temperature colloidal routes. The CIGS absorber layers for solar cells have been prepared by spray deposition of CIGS nanoparticle precursors (∼20 nm) in glove box under inert atmosphere. An automatic air atomizing nozzle spray system with computer controlled X-Y step motor system was used to spray. The nanoparticle precursor CIGS film was deposited onto molybdenum-coated soda-lime glass substrates (2.5 cm × 5.0 cm) heated to 160°C. The film thickness in the range of 2 μm ± 0.3 μm was attained by spraying of 3 mM colloidal over an area of 12.5 cm2. The coalescence between particles was observed in the CIGS absorber layer under post-treatment of over 550 °C. This is related to the reactive sintering among the nanoparticles to reduce surface energy of the particles. The CuxSe thin film, formed on Mo film by evaporation, improved adhesion between CIGS and Mo layers and enhanced the coalescence of the particles in the CIGS layer. These are closely related to the fluxing of Cu2Se phase which has relatively low melting temperature. The CdS buffer layer was deposited on the CIGS/Mo/soda-lime glass substrate by chemical bath deposition. The CIGS nanoparticles-based absorber layers were characterized by using energy dispersive spectroscopy (EDS), x-ray diffraction (XRD) and high-resolution scanning electron microscopy (HRSEM).


2005 ◽  
Vol 865 ◽  
Author(s):  
P. D. Paulson ◽  
S. H. Stephens ◽  
W. N. Shafarman

AbstractVariable angle spectroscopic ellipsometry has been used to characterize Cu(InGa)Se2 thin films as a function of relative Ga content and to study the effects of Cu off-stoichiometry. Uniform Cu(InGa)Se2 films were deposited on Mo-coated soda lime glass substrates by elemental evaporation with a wide range of relative Cu and Ga concentrations. Optical constants of Cu(InGa)Se2 were determined over the energy range of 0.75–C4.6 eV for films with 0 ≤ Ga/(In+Ga) ≤ 1 and used to determine electronic transition energies. Further, the changes in the optical constants and electronic transitions as a function of Cu off-stoichiometry were determined in Cu-In-Ga-Se films with Cu atomic concentration varying from 10 to 25 % and Ga/(In+Ga) = 0.3. Films with Cu in the range 16–24 % are expected to contain 2 phases so an effective medium approximation is used to model the data. This enables the relative volume fractions of the two phases, and hence composition, to be determined. Two distinctive features are observed in the optical spectra as the Cu concentration decreases. First, the fundamental bandgaps are shifted to higher energies. Second, the critical point features at higher energies become broader suggesting degradation of the crystalline quality of the material.


2011 ◽  
Vol 22 (20) ◽  
pp. 205602 ◽  
Author(s):  
Young Joon Hong ◽  
Yong-Jin Kim ◽  
Jong-Myeong Jeon ◽  
Miyoung Kim ◽  
Jun Hee Choi ◽  
...  

2014 ◽  
Vol 63 ◽  
pp. 11-18 ◽  
Author(s):  
Daniel Nieto ◽  
Tamara Delgado ◽  
María Teresa Flores-Arias

2013 ◽  
Vol 716 ◽  
pp. 325-327
Author(s):  
Xiao Yan Dai ◽  
Cheng Wu Shi ◽  
Yan Ru Zhang ◽  
Min Yao

In this paper, CdTe thin films were deposited on soda-lime glass substrates using CdTe powder as a source by close-spaced sublimation at higher source temperature of 700°C. The influence of the deposition time and the source-substrate distance on the chemical composition, crystal phase, surface morphology and optical band gap of CdTe thin films was systemically investigated by energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope and the ultraviolet-visible-near infrared absorption spectra, respectively. At the deposition time of 60 min and the source-substrate distance of 5 mm, the CdTe thin films had pyramid appearance with the grain size of 15 μm.


2017 ◽  
Vol 96 ◽  
pp. 107-116 ◽  
Author(s):  
Seyedali Emami ◽  
Jorge Martins ◽  
Luísa Andrade ◽  
Joaquim Mendes ◽  
Adélio Mendes

Sign in / Sign up

Export Citation Format

Share Document