Microscale Fracture Testing of Mg-Zn-Y

2009 ◽  
Vol 1225 ◽  
Author(s):  
Shun Matsuyama ◽  
Tetsuya Sakamoto ◽  
Masaaki Otsu ◽  
Kazuki Takashima ◽  
Yoshihito Kawamura

AbstractA microfracture testing technique was applied for investigating the fracture properties of Mg-Zn-Y alloys with a long-period stacking ordered (LPSO) phase. Microsized cantilever beam specimens with dimensions ≈ 10×20×50 μm3 were prepared from Mg-Zn-Y alloys by focused ion beam (FIB) machining. Notches with widths of 0.5 μm and depths of 3.5–5 μm were also introduced into the specimens by FIB machining. In this study, three types of Mg-Zn-Y alloys―Mg99.2Zn0.2Y0.6, Mg97Zn1Y2, and Mg88Zn5Y7―were used. Fracture tests were successfully conducted using a mechanical testing machine for microsized specimens at room temperature. The fracture toughness values (KIC) could not be obtained as the specimen size was too small to satisfy the plane strain condition. Hence, provisional KQ values were considered. The KQ values of the Mg97Zn1Y2 alloy were 0.8–1.2 MPam½, and those of the Mg88Zn5Y7 alloy were 1.2–3.0 MPam½. As the fracture in the Mg99.2Zn0.2Y0.6 alloy specimen occurred in a ductile plastic deformation, it was impossible to evaluate KQ values of this specimen. The increasing volume fraction of the LPSO phase indicates that the fracture toughness of Mg-Zn-Y alloys increases in LPSO phase.

2015 ◽  
Vol 1760 ◽  
Author(s):  
Shiori Suzuki ◽  
Nobuaki Sekido ◽  
Takahito Ohmura ◽  
Seiji Miura

ABSTRACTA micro-sized fracture testing method has been applied to investigate fracture toughness of alpha-Nb5Si3. Chevron-notched single crystal specimens with a size of 3 x 3 x 15 μm3 were prepared in a grain of polycrystalline alpha-Nb5Si3 by focused ion beam, FIB, technique. Fracture tests were conducted using a nanoindenter at room temperature and linear load-displacement curves and smooth fracture surfaces were obtained. This fracture behavior was presumed to be brittle fracture similar to bulk alpha-Nb5Si3. The average of fracture toughness KQ is 3.45 ± 0.29 MPa√m under a small-scale yielding condition.


2004 ◽  
Vol 842 ◽  
Author(s):  
K. Takashima ◽  
T. P. Halford ◽  
D. Rudinal ◽  
Y. Higo ◽  
M. Takeyama

ABSTRACTA micro-sized testing technique has been applied to investigate the fracture properties of lamellar colonies in a fully lamellar Ti-46Al-5Nb-1W alloy. Micro-sized cantilever specimens with a size ≈ 10 × 10 × 50 μm3 were prepared by focused ion beam machining. Notches with a width of 0.5 μm and a depth of 5 μm were also introduced into the micro-sized specimens by focused ion beam machining. Fracture tests were successfully completed using a mechanical testing machine for micro-sized specimens at room temperature. The fracture toughness (KQ) values obtained were in the range 1.4–7 MPam1/2. Fracture surface observations indicate that these variations are attributable to differences in local lamellar orientations ahead of the notch. These fracture toughness values are also lower than those having been previously reported in conventional samples. This may be due the absence of significant extrinsic toughening mechanisms in these micro-sized specimens. Fracture mechanisms of these alloys are also considered on the micrometer scale. The results obtained in this investigation give important and fundamental information on the development of TiAl based alloys with high fracture toughness.


2011 ◽  
Vol 462-463 ◽  
pp. 1361-1366 ◽  
Author(s):  
Bo Ming Zhang ◽  
Yu Fen Wu

For the sake of the carbon filaments’ fracture toughness, using the focused ion beam (FIB) to etch the carbon fibers and got different tensile strength, and all specimens were stretched on an Instron-type filaments testing machine and got the samples’ tensile strength, The crack-to-mirror size ratio was assumed as a constant, In virtue of Griffith fracture theory, Fracture toughness (KΙC) of representative high-strength type PAN (polyacrylonitrile)-based carbon fibers, Torayca T300 and T800, were estimated to be 1MPam1/2 from the tensile strength vs. fracture mirror size relation.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Daisuke Miyaguchi ◽  
Masaaki Otsu ◽  
Kazuki Takashima ◽  
Masao Takeyama

AbstractA microscale fracture testing technique has been applied to examine the fracture properties of lamellar in TiAl PST crystals. Micro-sized cantilever specimens with a size ˜ 10×20×50 μm3 were prepared from Ti-48Al two-phase single crystals (PST) lamellar by focused ion beam (FIB) machining. Notches with a width of 0.5 μm and a depth of 5 μm were also introduced into the specimens by FIB. Two types of notch directions (interlamellar and translamellar) were selected when introducing the notches. Fracture tests were successfully completed using a mechanical testing machine for micro-sized specimens at room temperature. The fracture toughness (KQ) values of the interlamellar type specimens were obtained in the range 1.5–3.6 MPam1/2, while those of the translamellar specimens were 5.0–8.1 MPam1/2. These fracture toughness values are lower than those having been previously reported in conventional TiAl PST samples. For macro-sized specimens, extrinsic toughening mechanisms, including shear ligament bridging, act in the crack wake, and the crack growth resistance increases rapidly with increasing length of crack wake for lamellar structured TiAl alloys. In contrast, the crack length in microsized specimens is only 2–3 μm. This indicates that extrinsic toughening mechanisms are not activated in micro-sized specimens. This also indicates that intrinsic fracture toughness can be evaluated using microscale fracture toughness testing.


2001 ◽  
Vol 7 (S2) ◽  
pp. 420-421
Author(s):  
H. Saka ◽  
W.-J. Moon ◽  
S. Horiuchi ◽  
S. Uchimura

Many attempts have been made to improve the fracture toughness of brittle materials such as ceramics. Most of the methods developed so far make use of metallurgical processes, for example, phase transformation, refining of grains, formation of composite materials. However, these methods can not be applied universally to brittle materials which do not have such a useful metallurgical processes.Moon and Saka (1) recently showed that the fracture toughness Klc of a YAG single crystal the sub-surface of which is damaged by micro-Vickers indentation at room temperature, followed by annealing at high temperatures is improved by a factor 2 from 1.13 to 2.26MPam1/2. The fracture toughness Klc was evaluated by measuring the length of cracks which initiate at the corner of Vickers indentation(2). Transmission electron microscopy of the subsurface reveals the healing of cracks introduced by room-temperature indentation and formation of dislocation cells. The thin foil specimens were prepared using a focused ion beam (FIB) technique(3).


1999 ◽  
Vol 605 ◽  
Author(s):  
Y. Ichikawa ◽  
S. Maekawa ◽  
K. Takashima ◽  
M. Shimojo ◽  
Y. Higo ◽  
...  

AbstractFracture behavior of micro-sized Ni-P Amorphous alloy specimens has been investigated using a newly developed mechanical testing machine. Specimens with dimensions of 10 × 12 × 50 μm were prepared by focused ion beam machining. Two types of specimens with different crack geometries were prepared. One specimen has a notch with root radius is 0.25 μtm and the other has a fatigue pre-crack. The shapes of the loaddisplacement curves are different for each type of specimen. The fracture strength of the specimens with a notch is higher than that with a fatigue pre-crack and the fracture surfaces of the specimens are also different for each type of specimen. This may be due to the difference in stress concentration at the crack (notch) tip, and indicates that even a notch with a root radius of 0.25 μm is not able to be regarded as a crack for micro-sized specimens. Therefore, the introduction of a fatigue pre-crack is essential for the evaluation of fracture toughness for such micro-sized specimens.


2003 ◽  
Vol 795 ◽  
Author(s):  
K. Takashima ◽  
T. P. Halford ◽  
D. Rudinal ◽  
Y. Higo ◽  
P. Bowen

ABSTRACTFracture tests have been carried out on micro-sized specimens prepared from a fully lamellar γ-TiAl based alloy thin foil. Micro cantilever beam type specimens with dimensions = 50 × 10 × 20 μm were prepared from one lamellar colony of the thin foil by focused ion beam machining. Notches with a width of 0.5 μm and a depth of 10 μm were also introduced into the micro-sized specimens by focused ion beam machining. Notch directions were introduced into samples in order to select the trans- and inter-lamellar directions, respectively. Fracture tests were carried out using a mechanical testing machine for micro-sized specimens. Fracture tests for the micro-sized specimens were performed successfully, showing the fracture behaviour to be dependent upon the notch orientation. The fracture toughness of specimens with a notch direction perpendicular to the lamellar direction was 4.7 – 6.9 MPam1/2, while that with a notch direction in the inter-lamellar direction was 1.4 – 2.7 MPm1/2. This indicates that the orientation of the lamellar microstructure greatly affects the fracture properties of micro-sized components prepared from fully lamellar γ-TiAl based alloy thin foils. It is required to consider the results obtained in this investigation when designing actual micro scale structures using TiAl thin foils.


2002 ◽  
Vol 741 ◽  
Author(s):  
K. Takashima ◽  
S. Koyama ◽  
K. Nakai ◽  
Y. Higo

ABSTRACTIn our previous investigations [1, 2], we have demonstrated that the introduction of fatigue pre-crack ahead of a notch is required to measure reliable fracture toughness values even for micro-sized specimens. However, it is rather difficult to introduce a fatigue pre-crack into a micro-sized specimen as once a fatigue crack starts to grow then the fatigue fracture occurs within one thousand cycles and this makes it extremely difficult to control fatigue crack length. Therefore, a new fatigue pre-cracking method is required for measuring fracture toughness. In this investigation, a new fatigue pre-cracking method has been proposed for micro-sized specimens and fracture toughness tests were carried out for the micro-sized specimens with fatigue pre-crack. Micro-cantilever beam type specimens with dimensions of 10 × 10 × 50 μm3 were prepared from an electroless deposited Ni-P amorphous alloy thin film and notches were introduced by focused ion beam machining. Fatigue pre-cracks were introduced ahead of the notches by far-field cyclic compression method using a mechanical testing machine for micro-sized specimens (MFT2000). Fracture tests were also carried out using the testing machine. Fatigue pre-cracks with length of 0.2 μm were confirmed on the fracture surfaces ahead of the notches in the far-field cyclically compressed specimens. This indicates that the fatigue pre-cracking method developed in this investigation is promising for measuring accurate fracture toughness for micro-sized specimens for MEMS applications.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Hajime Yoshimura ◽  
Shun Matsuyama ◽  
Mitsuhiro Matsuda ◽  
Masaaki Otsu ◽  
Kazuki Takashima ◽  
...  

ABSTRACTA Mg-Zn-Y alloy including a Mg12ZnY intermetallic compound exhibits excellent mechanical properties as compared to conventional magnesium alloys. The superior mechanical properties of this alloy seem to originate from the Mg12ZnY intermetallic compound; however, the mechanical properties of Mg12ZnY itself have not yet been fully investigated owing to the small size of this compound. In this study, a microfracture test was performed to investigate the fracture properties of the Mg12ZnY intermetallic compound. The material used in this test was a Mg88Zn5Y7 alloy. Micro-sized cantilever specimens composed of Mg12ZnY, with dimensions of 10 × 20 × 50 μm3, were prepared selectively isolated from the Mg88Zn5Y7 alloy using focused ion beam (FIB) machining. Notches with a width of 0.5 μm and a depth of 5 μm were also introduced into the micro-sized specimens. Microfracture tests were performed using a mechanical testing machine for microscale materials. The fracture toughness values (KQ) of Mg12ZnY were 1.2−3.0 MPam1/2. TEM observations indicated that the KQ values were dependent on the crack orientation in Mg12ZnY, with the higher KQ values correlating with cracks propagating parallel to the c-axis of Mg12ZnY. This suggests that the fracture toughness of Mg-Zn-Y alloys can be improved by controlling the orientation of the Mg12ZnY compound.


2002 ◽  
Vol 733 ◽  
Author(s):  
Brock McCabe ◽  
Steven Nutt ◽  
Brent Viers ◽  
Tim Haddad

AbstractPolyhedral Oligomeric Silsequioxane molecules have been incorporated into a commercial polyurethane formulation to produce nanocomposite polyurethane foam. This tiny POSS silica molecule has been used successfully to enhance the performance of polymer systems using co-polymerization and blend strategies. In our investigation, we chose a high-temperature MDI Polyurethane resin foam currently used in military development projects. For the nanofiller, or “blend”, Cp7T7(OH)3 POSS was chosen. Structural characterization was accomplished by TEM and SEM to determine POSS dispersion and cell morphology, respectively. Thermal behavior was investigated by TGA. Two methods of TEM sample preparation were employed, Focused Ion Beam and Ultramicrotomy (room temperature).


Sign in / Sign up

Export Citation Format

Share Document