Laser Direct Writing of Optical Interconnects in Polyimides and Sio2:TiO2 Coatings

1989 ◽  
Vol 158 ◽  
Author(s):  
D.W. Hewak ◽  
H. Jerominek

ABSTRACTCommercially available polyimides and SiO2:TiO2 coatings are experimentally studied for their potential application in optical guided-wave interconnect networks. Optical properties are measured, including transmission spectra, refractive index and loss, with the aim of determining the materials most suited for this application. On the most promising candidates, direct writing of strip waveguides with Ar-ion laser at 514.5 and 457.9 nm was performed. Localized thermal curing by writing with speeds up to 250 microns per second allows the achievement of multimode guiding structures. Light propagation loss measurements reveal that attenuation in strip waveguides is of the same order as in slab structures of the same material, typically 5-10 dB/cm at 633 nm.

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 910 ◽  
Author(s):  
Rongbo Wu ◽  
Min Wang ◽  
Jian Xu ◽  
Jia Qi ◽  
Wei Chu ◽  
...  

In this paper, we develop a technique for realizing multi-centimeter-long lithium niobate on insulator (LNOI) waveguides with a propagation loss as low as 0.027 dB/cm. Our technique relies on patterning a chromium thin film coated on the top surface of LNOI into a hard mask with a femtosecond laser followed by chemo-mechanical polishing for structuring the LNOI into the waveguides. The surface roughness on the waveguides was determined with an atomic force microscope to be 0.452 nm. The approach is compatible with other surface patterning technologies, such as optical and electron beam lithographies or laser direct writing, enabling high-throughput manufacturing of large-scale LNOI-based photonic integrated circuits.


1995 ◽  
Vol 397 ◽  
Author(s):  
S. Boughaba ◽  
G. Auvert

ABSTRACTAn argon-ion laser based direct-writing technique was used to deposit micron-size silicon lines from the decomposition of silane (SiH4) and trisilane (Si3H8) gases. The substrates used were 0.1 μrn polysilicon/1 μ.m silicon dioxide/<100> monosilicon multilayered structures. The vertical silicon deposition rate was investigated as a function of the laser-induced surface temperature and gas pressure. For temperatures ranging between 1000 and 1410 °C, the pressure was varied in the range 5-250 mbar and 0.1-30 mbar for SiH4 and Si3H8, respectively. For both gases, three growth regimes could be distinguished according to precursor pressure. The deposition rates achieved using trisilane are far higher than those obtained with silane in spite of the use of a reduced gas pressure range. For a laser-induced surface temperature of 1300 °C and a precursor pressure of 10 mbar, the deposition rates achieved using SiH4 and Si3H8 are, respectively, 0.42 and 20 μ.m/s, representing an enhancement factor of 50 with the later.


2008 ◽  
Vol 17 (04) ◽  
pp. 425-433 ◽  
Author(s):  
SHUANGCHEN RUAN ◽  
YI HUANG ◽  
CHENLIN DU ◽  
YONGQIN YU

Femtosecond laser pulses with ultrashort time duration and ultrahigh peak power can cause the refractive index change in transparent materials and micron scale machining precision. Long period fiber gratings (LPFGs) with different periods and different grating lengths in the standard single mode fiber were fabricated, using laser direct writing method, by femtosecond laser pulses with pulse width of 200 fs at a center wavelength of 800 nm in air. The transmission spectra were studied in the range of 1510 nm to 1610 nm. Two LPFGs with period of 400 μm, and 550 μm, respectively fabricated with same irradiation power of 275 mW, were shown. The loss peak of 1552 nm, the transmission loss of 16 dB and the FWHM of 20 nm were obtained when the period of LPFG was 400 μm, while the loss peak of 1588 nm, the transmission loss of 20 dB and the FWHM of 25 nm were achieved when the period of LPFG was 550 μm. According to the theory of mode field coupling for long period grating, it was indicated that the modulation of refractive index Δn was in the level of 10-2.


Author(s):  
Rongbo Wu ◽  
Min Wang ◽  
Jian Xu ◽  
Jia Qi ◽  
Wei Chu ◽  
...  

We develop a technique for realizing lithium niobate on insulator (LNOI) waveguides of a multi-centimeter-length with a propagation loss as low as 0.027 dB/cm. Our technique relies on patterning a chromium (Cr) thin film coated on the top surface of LNOI into a hard mask with a femtosecond laser followed by the chemo-mechanical polishing for structuring the LNOI into the waveguides. The surface roughness on the waveguides is determined to be 0.452 nm with an atomic force microscope (AFM). The approach is compatible with other surface patterning technologies such as optical and electron beam lithographies or laser direct writing, enabling high-throughput manufacturing of large-scale LNOI-based photonic integrated circuits.


2019 ◽  
Vol 27 (21) ◽  
pp. 30090 ◽  
Author(s):  
Wenqiang Ma ◽  
Leilei Wang ◽  
Peiqing Zhang ◽  
Wei Zhang ◽  
Baoan Song ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 872
Author(s):  
Sigita Grauzeliene ◽  
Aukse Navaruckiene ◽  
Edvinas Skliutas ◽  
Mangirdas Malinauskas ◽  
Angels Serra ◽  
...  

The use of renewable sources for optical 3D printing instead of petroleum-based materials is increasingly growing. Combinations of photo- and thermal polymerization in dual curing processes can enhance the thermal and mechanical properties of the synthesized thermosets. Consequently, thiol-ene/thiol-epoxy polymers were obtained by combining UV and thermal curing of acrylated epoxidized soybean oil and epoxidized linseed oil with thiols, benzene-1,3-dithiol and pentaerythritol tetra(3-mercaptopropionate). Thiol-epoxy reaction was studied by calorimetry. The changes of rheological properties were examined during UV, thermal and dual curing to select the most suitable formulations for laser direct writing (LDW). The obtained polymers were characterized by dynamic-mechanical thermal analysis, thermogravimetry, and mechanical testing. The selected dual curable mixture was tested in LDW 3D lithography for validating its potential in optical micro- and nano-additive manufacturing. The obtained results demonstrated the suitability of epoxidized linseed oil as a biobased alternative to bisphenol A diglycidyl ether in thiol-epoxy thermal curing reactions. Dual cured thermosets showed higher rigidity, tensile strength, and Young’s modulus values compared with UV-cured thiol-ene polymers and the highest thermal stability from all prepared polymers. LDW results proved their suitability for high resolution 3D printing—individual features reaching an unprecedented 100 nm for plant-based materials. Finally, the biobased resin was tested for thermal post-treatment and 50% feature downscaling was achieved.


Sign in / Sign up

Export Citation Format

Share Document