Glancing Angle X-Ray Study of Crystallization of Amorphous Ge at the Ge-A1 Interface

1990 ◽  
Vol 202 ◽  
Author(s):  
S. M. Heald ◽  
J. K. D. Jayanetti ◽  
R. C. Budhani

ABSTRACTThe amorphous to crystalline transformation of Ge in Al/Ge thin film couples has been studied using glancing angle EXAFS, x-ray reflectivity and diffraction. It was found that crystallization occurs at a much lower temperature (118-150 °C) than for bulk Ge, and initiates at the Al/Ge interface. X-ray diffraction studies were made at 152 °C to study the kinetics of the reaction. After an initial period we find good agreement with a square root dependence of the time, characteristic of a diffusion limited reaction.

1988 ◽  
Vol 119 ◽  
Author(s):  
Hung-Yu Liu ◽  
Peng-Heng Chang ◽  
Jim Bohlman ◽  
Hun-Lian Tsai

AbstractThe interaction of Al and W in the Si/SiO2/W-Ti/Al thin film system is studied quantitatively by glancing angle x-ray diffraction. The formation of Al-W compounds due to annealing is monitored by the variation of the integrated intensity from a few x-ray diffraction peaks of the corresponding compounds. The annealing was conducted at 400°C, 450°C and 500°C from 1 hour to 300 hours. The kinetics of compound formation is determined using x-ray diffraction data and verified by TEM observations. We will also show the correlation of the compound formation to the change of the electrical properties of these films.


1998 ◽  
Vol 13 (1) ◽  
pp. 197-204 ◽  
Author(s):  
B. A. Baumert ◽  
L-H. Chang ◽  
A. T. Matsuda ◽  
C. J. Tracy ◽  
N. G. Cave ◽  
...  

Physical and electrical characterization techniques have been applied to the problem of developing a lower temperature process for spin-on Ba0.7Sr0.3TiO3 thin films and capacitors compatible with on-chip aluminum metallization. The films were prepared by spin-coating from carboxylate precursors and were processed at temperatures between 650 °C and 450 °C. Capacitors annealed at higher temperatures have a dielectric constant (κ) of 382, a C/A of 20 fF/μm2, and a leakage current density of 2 × 10−7 A/cm2 at 3.3 V. Those processed at 450 °C show occasionally promising but inconsistent results, correlated using TEM images with locally variable crystallization into the perovskite phase. The kinetics of the spin-on solution chemical decomposition and crystallization has been investigated through the use of x-ray diffraction (XRD), thermogravimetric analysis (TGA), and Raman spectroscopy.


2007 ◽  
Vol 336-338 ◽  
pp. 2340-2343 ◽  
Author(s):  
Song He Meng ◽  
Xing Hong Zhang ◽  
Wei Feng Zhang

The reaction process and kinetics of Al-TiO2-C-Ti-Fe system were investigated by differential scanning calorimetry (DSC) analysis, X-ray diffraction (XRD) analysis and scanning electron microscope (SEM). In order to obtain the information of reaction process for complicated system, the reaction characteristics of Al-TiO2, Al-TiO2-C and Al-TiO2-C-Ti systems are explored firstly. The results show that the reaction process varies with temperature in Al-TiO2-C-Ti-Fe system. At the lower temperature, the dominating reaction in Al-TiO2-C-Ti-Fe system is that between Al and Ti, Al and Fe, and so TiAlx, FeAlx, and Ti2Fe intermetallic compounds form. With the temperature increasing, the intermetallic compounds are decomposed. Then the decomposed Ti and Al react with C and TiO2 respectively and the stable TiC, Al2O3 and Fe three phases form in the final product.


1973 ◽  
Vol 46 (1) ◽  
pp. 22-29 ◽  
Author(s):  
R. C. Hirst ◽  
H. Y. Chen

Abstract The satisfactory agreement between our NMR results and X-ray diffraction results for the crystallinity in stark rubber at room temperature lead us to conclude that the NMR rigid lattice fraction, PRL, may be taken as equal to the fractional crystallinity obtained by other methods. Similarly, the good agreement between the time dependence of PRL at low temperature and the theoretical curve shape strongly suggest that the NMR crystallinity method works well down to at least −25° C for natural rubber and synthetic cis-poly (isoprene). It would be desirable to compare carefully the NMR crystallinity found for rubber crystallized at −25° C with X-ray diffraction results, but we have been unable to find any such X-ray diffraction studies at −25° C. Maximum values of ΔV/V≅0.025 from dilatometric studies appear to imply somewhat smaller crystallinities than those found by NMR, but an accurate comparison is not possible without having X-ray diffraction densities at −25° C. While the present experiments were carried out on unfilled, unstretched, unvulcanized samples, the NMR crystallinity method is equally applicable to samples which are filled, stretched, and vulcanized. Naturally any additive or impurity containing hydrogen is a possible source of interference, but there should be no difficulty in correcting for such interferences.


1990 ◽  
Vol 205 ◽  
Author(s):  
F. Edelman ◽  
C. Cytermann ◽  
R. Brener ◽  
M. Eizenberg ◽  
R. Weil ◽  
...  

AbstractX-ray diffraction and transmission electron microscopy have been used to study the kinetics of phase transformations and the structure of Pd/a-Si, Pd/a-Ge and Pd/a-GeSi thin films deposited on Si substrates. Different kinds of amorphouis structures were used: a-Si:H:D, a-Si.:F, a-Ge:H:D, and a-GeSi:H:D. The first stage of phase transformation during heat treatment was palladium silicide (Pd2Si) and palladium germanide (Pd2Ge) formation at temperatures above 200°C. Annealing studies demonstrated that the presence of F in a-Si promotes the Pd2Si formation. The study of the Pd2Si crystallization process showed that: a) when the Pd layer and the a-Si layer are thin, then c-PdSi grows in a fractal-]ike form; b) when the Pd and a-Si both are thick, then c-Pd2Si grows in a globular structure; c) in both above mentioned cases a well-oriented [0011 texture forms. The growth of the silicide and germanide layers in the temperature range of 200-300°C was found to be controlled by a diffusion limited process. It was found that c-Pd2Ge transforms to c-PdGe above 200°C. The a-Ge,.,Si,. 5 alloy behaved similarly to a-Si forming only [001] textured c-Pd2(Ge,Si).


2013 ◽  
Vol 212 ◽  
pp. 225-228
Author(s):  
Lucjan Pająk ◽  
Kazimierz J. Ducki ◽  
Lilianna Wojtynek

The influence of prolonged ageing on the kinetics of the precipitation process of the secondary phases in an A-286 type Fe-Ni superalloy has been studied. The samples were subjected to a solution heat treatment at 980°C for 2 h and water quenched, and then aged at temperatures of 715, 750 and 780°C at holding times from 0.5 to 500 h. Structural investigations were conducted using X-ray diffraction methods. The values of the austenite lattice constant were estimated with the use of the cos2θ extrapolation function, and by the Toraya (WPPF) and Rietveld methods. It was found that the largest decrease in the austenite lattice constant took place during the initial period of ageing at all investigated temperatures, which corresponds to the spinodal decomposition of supersaturated austenite and formation of the γ'-Ni3(Al,Ti) intermetallic phase. Good agreement between the values of the austenite lattice constant determined using the extrapolation function and the Rietveld method was found.


Author(s):  
A. Leineweber ◽  
M. Löffler ◽  
S. Martin

Abstract Cu6Sn5 intermetallic occurs in the form of differently ordered phases η, η′ and η′′. In solder joints, this intermetallic can undergo changes in composition and the state of order without or while interacting with excess Cu and excess Sn in the system, potentially giving rise to detrimental changes in the mechanical properties of the solder. In order to study such processes in fundamental detail and to get more detailed information about the metastable and stable phase equilibria, model alloys consisting of Cu3Sn + Cu6Sn5 as well as Cu6Sn5 + Sn-rich melt were heat treated. Powder x-ray diffraction and scanning electron microscopy supplemented by electron backscatter diffraction were used to investigate the structural and microstructural changes. It was shown that Sn-poor η can increase its Sn content by Cu3Sn precipitation at grain boundaries or by uptake of Sn from the Sn-rich melt. From the kinetics of the former process at 513 K and the grain size of the η phase, we obtained an interdiffusion coefficient in η of (3 ± 1) × 10−16 m2 s−1. Comparison of this value with literature data implies that this value reflects pure volume (inter)diffusion, while Cu6Sn5 growth at low temperature is typically strongly influenced by grain-boundary diffusion. These investigations also confirm that η′′ forming below a composition-dependent transus temperature gradually enriches in Sn content, confirming that Sn-poor η′′ is metastable against decomposition into Cu3Sn and more Sn-rich η or (at lower temperatures) η′. Graphic Abstract


2006 ◽  
Vol 84 (8) ◽  
pp. 1045-1049 ◽  
Author(s):  
Shabaan AK Elroby ◽  
Kyu Hwan Lee ◽  
Seung Joo Cho ◽  
Alan Hinchliffe

Although anisyl units are basically poor ligands for metal ions, the rigid placements of their oxygens during synthesis rather than during complexation are undoubtedly responsible for the enhanced binding and selectivity of the spherand. We used standard B3LYP/6-31G** (5d) density functional theory (DFT) to investigate the complexation between spherands containing five anisyl groups, with CH2–O–CH2 (2) and CH2–S–CH2 (3) units in an 18-membered macrocyclic ring, and the cationic guests (Li+, Na+, and K+). Our geometric structure results for spherands 1, 2, and 3 are in good agreement with the previously reported X-ray diffraction data. The absolute values of the binding energy of all the spherands are inversely proportional to the ionic radius of the guests. The results, taken as a whole, show that replacement of one anisyl group by CH2–O–CH2 (2) and CH2–S–CH2 (3) makes the cavity bigger and less preorganized. In addition, both the binding and specificity decrease for small ions. The spherands 2 and 3 appear beautifully preorganized to bind all guests, so it is not surprising that their binding energies are close to the parent spherand 1. Interestingly, there is a clear linear relation between the radius of the cavity and the binding energy (R2 = 0.999).Key words: spherands, preorganization, density functional theory, binding energy, cavity size.


2013 ◽  
Vol 834-836 ◽  
pp. 531-535
Author(s):  
Li Yan Yang ◽  
Yi Hui Guo ◽  
Li Li Yu ◽  
Jing You

A type of cross-linking starch microsphere (CSMs) has been synthesized via reversed phase suspension method. Crosslinked starch microsphere has good adsorption performance to metal ions in water. The adsorption kinetics of Co (II) on the CSMs, selectivity of adsorption CSMs towards Co (II),Cu (II),Pb (II),Cd (II) and adsorption effects of media towards Co (II) were investigated. The CSMs and its adsorption product were comparatively characterized by X-ray diffraction (XRD). The results showed that The adsorption rate is mainly controlled by liquid film diffusion, and the constant of adsorption rate is 0.0686min-1 at 308K. The crystal structure of the CSMs decreased greatly after the incorporation of Co (II). Co (II) has better adsorption selectivity on CSMs. Ions coexist and other substances in the solution have certain impact on adsorption. Those data are helpful for treatment of the wastewater containing heavy ions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


Sign in / Sign up

Export Citation Format

Share Document