In-Situ Studies of the Formation Sequence of Silicides During Vacuum (10-7 TORR)Thermal Annealing of TI/Polysilicon Bilayers

1991 ◽  
Vol 237 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen ◽  
S. Lee

ABSTRACTThe formation of suicides during the thermal reaction of Ti/polysilicon bilayers has been investigated using both in-stu four point sheet resistance measurements and ex-situ measurements including X-ray diffraction, cross-sectional transmission electron microscopy and Auger electron spectroscopy. For a series of samples annealed at a ramp rate of 10°C/min the following sequence of changes in the bilayers occurred. At temperatures exceeding 350°C and prior to the silicidation oxygen from the vacuum system diffuses into the Ti film forming a solid solution of Ti(O) with O levels up to 20 %. An amorphous TixSiy layer is the first major suicide reaction observed at temperatures near 440°C. The first major crystalline phase is observed at 500°C and identified as C49 TiSi2. This phase was found to coexist at these temperatures with the partially consumed Ti(O) and the amorphous TixSiy layers. Further annealing above 700 °C results in the final structural transformation from C49 TiSi2 to C54 TiSi2.

2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


2020 ◽  
Vol 98 (5) ◽  
pp. 365-375
Author(s):  
Andrea Quintero ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  

2020 ◽  
Vol MA2020-02 (24) ◽  
pp. 1750-1750
Author(s):  
Andrea Quintero Colmenares ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  

1993 ◽  
Vol 313 ◽  
Author(s):  
I. Hashim ◽  
H.A. Atwater ◽  
Thomas J. Watson

ABSTRACTWe have investigated structural and magnetic properties of epitaxial Ni80Fe20 films grown on relaxed epitaxial Cu/Si (001) films. The crystallographic texture of these films was analyzed in situ by reflection high energy electron diffraction (RHEED), and ex situ by x-ray diffraction and cross-sectional transmission electron Microscopy (XTEM). In particular, RHEED intensities were recorded during epitaxial growth, and intensity profiles across Bragg rods were used to calculate the surface lattice constant, and hence, find the critical epitaxial thickness for which Ni80Fe20 grows pseudomorphically on Cu (100). XTEM analysis indicated that the epitaxial films had atomically-abrupt interfaces which was not the case for polycrystalline Cu and Ni80Fe20 film interfaces. The Magnetic properties of these epitaxial films were Measured in situ using Magneto-optic Kerr effect magnetometry and were compared with those of polycrystalline films grown on SiO2/Si. Large Hc (∼ 35 Oe) was observed for epitaxial Ni80Fe20 films less than 3.0 nm thick whereas for increasing thickness, Hc decreased approximately monotonically to a few Oersteds. Correlations were made between magnetic properties of these epitaxial films, the strain in the film and the interface roughness obtained from XTEM analysis.


2012 ◽  
Vol 717-720 ◽  
pp. 845-848 ◽  
Author(s):  
Alexia Drevin-Bazin ◽  
Jean François Barbot ◽  
Thierry Cabioc’h ◽  
Marie France Beaufort

In this study, investigations on MAX phase Ti3SiC2 formation to n-type 4H-SiC substrates and its ohmic-behaved are reported. Ti-Al layers were deposited onto SiC substrates at room temperature by magnetron sputtering in high vacuum system. Thermal annealing at 1000°C in Ar atmosphere were performed to allow interdiffusion processes. X-ray diffraction and High Resolution Transmission Electron Microscopy reveal that a Ti3SiC2 contact, in perfect epitaxy with 4H-SiC substrate, is so-obtained. In situ annealing experiment underlines the evolution of Ti-Al contact microstructure versus temperature. The evolution of contact system from Schottky to Ohmic behaved is observed by I-V measurements for annealing temperatures larger than 700°C.


2014 ◽  
Vol 1655 ◽  
Author(s):  
Fahid Algahtani ◽  
Patrick W Leech ◽  
Geoffrey K Reeves ◽  
Anthony S Holland ◽  
Mark Blackford ◽  
...  

ABSTRACTThe formation of nickel germanide has been examined over a range of low temperatures (200-400 °C) in an attempt to minimize the thermal budget for the process. Cross-sectional Transmission Electron Microscopy (TEM) was used to determine the texture of the germanide layer and the morphology and constituent composition of the Ge/NiGe interface. The onset and completion of reaction between Ni and Ge were identified by means of a heated stage in combination with in-situ x-ray diffraction (XRD) measurements. The stages of reaction were also monitored using measurements of sheet resistance of the germanides by the Van der Pauw technique. The results have shown that the minimum temperature for the initiation of reaction of Ni and Ge to form NiGe was 225 °C. However, an annealing temperature > 275 °C was necessary for the extensive (and practical) formation of NiGe. Between 200 and 300 °C, the duration of annealing required for the formation of NiGe was significantly longer than at higher temperatures. The stoichiometry of the germanide was very close to NiGe (1:1) as determined using energy dispersive spectroscopy (EDS).


1996 ◽  
Vol 440 ◽  
Author(s):  
Bi-Ke Yang ◽  
J. D. Weil ◽  
M. Krishnamurthy

AbstractWe report on the differences in the epitaxial growth mechanisms between Ge1−xCx (O<x<0.1) and Ge1−x−ySixCy (x=0.2, 0<y<0.05) alloys grown on Si(100) using low temperature( 200°C) molecular beam epitaxy. Thin films (50˜65nm) were characterized in situ by RHEED and ex situ by transmission electron microscopy and x-ray diffraction. With increasing C concentration, the microstructure of both Ge and GeSi alloys changes from 2D layer growth to 3D islanding. The d400 spacing of the relaxed alloys decreases marginally, with a maximum of 1at.% C being substitutionally incorporated. Ge-C films with higher C content have a high density of planar defects, typically twins and stacking faults. The addition of 20% Si does not appear to increase the amount of substitutional C in the films. Rather, the additions of 20% Si to Ge-C alloys somehow seems to enhance the tendency for the formation of planar defects.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


2010 ◽  
Vol 89-91 ◽  
pp. 503-508 ◽  
Author(s):  
J. Sheng ◽  
U. Welzel ◽  
Eric J. Mittemeijer

The stress evolution during diffusion annealing of Ni-Cu bilayers (individual layer thicknesses of 50 nm) was investigated employing ex-situ and in-situ X-ray diffraction measurements. Annealing at relatively low homologous temperatures (about 0.3 - 0.4 Tm) for durations up to about 100 hours results in considerable diffusional intermixing, as demonstrated by Auger-electron spectroscopy investigations (in combination with sputter-depth profiling). In addition to thermal stresses due to differences of the coefficients of thermal expansion of layers and substrate, tensile stress con-tributions in the sublayers arise during the diffusion anneals. The obtained stress data have been discussed in terms of possible mechanisms of stress generation. The influence of diffusion on stress development in the sublayers of the diffusion couple during heating and isothermal annealing was investigated by comparing stress changes in the bilayer system with corresponding results obtained under identical conditions for single layers of the components in the bilayer system. The specific residual stresses that emerge due to diffusion between the (sub)layers in the bilayer could thereby be identified.


Sign in / Sign up

Export Citation Format

Share Document