Determination of the Roughness of CVD Surfaces by Laser Scattering

1991 ◽  
Vol 250 ◽  
Author(s):  
Max Klein ◽  
Bernard Gallois

AbstractA laser scattering apparatus was developed for the determination of surface roughness and other surface statistical parameters of chemically vapor-deposited coatings. Visual examination of HeNe laser scattering patterns reflected from polished sapphire and CVD titanium nitride surfaces showed a sensitivity to roughness differences of tens of nanometers. The scattering apparatus was integrated with a cold-wall CVD reactor. The root mean square roughness of silicon carbide deposits on silicon in the early stages of growth was determined from the intensity of the specularly reflected beam. Changes in roughness and the spatial arrangement of depositing crystallites were monitored in situ by angular resolution of the scattered light spectra. Both ex situ and in situ results were in good agreement with profilometric examinations of the rough surfaces.

2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


1991 ◽  
Vol 222 ◽  
Author(s):  
B. Johs ◽  
J. L. Edwards ◽  
K. T. Shiralagi ◽  
R. Droopad ◽  
K. Y. Choi ◽  
...  

ABSTRACTA modular spectroscopic ellipsometer, capable of both in-situ and ex-situ operation, has been used to measure important growth parameters of GaAs/AIGaAs structures. The ex-situ measurements provided layer thicknesses and compositions of the grown structures. In-situ ellipsometric measurements allowed the determination of growth rates, layer thicknesses, and high temperature optical constants. By performing a regression analysis of the in-situ data in real-time, the thickness and composition of an AIGaAs layer were extracted during the MBE growth of the structure.


2002 ◽  
Vol 753 ◽  
Author(s):  
Martin A. Crimp ◽  
Boon-Chi Ng ◽  
Benjamin A. Simkin ◽  
Thomas R. Bieler

ABSTRACTTo gain a better understanding of the ductility limitations in TiAl alloys, the mechanisms involved in deformation strain transfer and/or microcrack initiation at grain boundaries have been examined in an equiaxed near-γ alloy. These studies have been carried out on both in-situ and ex-situ deformed bulk samples using scanning electron microscopy (SEM) techniques for both orientation analysis and deformation defect imaging. Selected area electron channeling patterns (SACPs) have allowed determination of grain orientations, eliminating ambiguity between the a and c axes. Deformation twins and dislocations have been imaged in the bulk samples using electron channeling contrast imaging (ECCI). A combination of ECCI contrast analysis and trace analysis based on orientations determined from SACP has allowed identification of the active deformation systems. Microcracks have been found to initiate at γ-γ boundaries as a result of an inability to adequately transfer twin strain from grain to grain. Once initiated, cracks propagate through cleavage and re-nucleation of grain boundary microcracks in front of the advancing crack. A geometric based predictive factor has been developed that accounts for microcrack initiation at γ-γ boundaries based in deformation twinning and strain accommodation by ordinary dislocations.


2005 ◽  
Vol 482 ◽  
pp. 355-358 ◽  
Author(s):  
S. Kúdela ◽  
H. Wendrock ◽  
L. Ptáček ◽  
S. Menzel ◽  
K. Wetzig

Fibers fracture in tensile strained Mg and MgLi matrix composites strengthened with ~10% vol. short δ-Al2O3 fibers (Saffil) is investigated by „in-situ“ scanning electron microscopy and ex-situ“ determination of the length of fibers chemically recovered from tensile failed composites. Little interfacial reaction in Mg matrix composite results in poor interfacial bond so that composite failure proceeds via fiber pull-out with negligible fiber fragmentation. On the other hand, extensive fiber/matrix reaction in MgLi matrix composites promotes formation of strong interfaces which are linked with multiple fiber cross-breakage during tensile straining. These results are consistent with experimental tensile strengths of related composites.


1995 ◽  
Vol 117 (4) ◽  
pp. 383-389 ◽  
Author(s):  
J. M. Hollis

A joint testing system was designed to transmit a specified motion or force to a joint in all six degrees of freedom (d.o.f.) using a spatial linkage system for position feedback. The precise reproducibility of position provided by this method of position feedback allows determination of in situ ligament forces for external joint loadings. Load on the structure of interest is calculated from six d.o.f. load cell output after the loaded position is reproduced with all other structures removed. In a test of this system, measured loads showed good agreement with applied loads.


1996 ◽  
Vol 436 ◽  
Author(s):  
T. W. Scharf ◽  
R. B. Inturi ◽  
J. A. Barnard

AbstractD.C. magnetron sputtering from a CVD β-SiC target has been utilized to deposit amorphous SiC thin films on various substrates (Coming 7059 glass, unoxidized Si (111), and sapphire). The approximately 1 μm thick films were grown under various Ar sputtering pressures and flow rates. In situ annealing during deposition in vacuum and ex situ post-deposition annealing in air, both at 500°C for two hours, were implemented to determine their effects on the properties of the films. The mechanical properties were assessed via nanoindentation. An accelerated sphere-on-flat(tape) wear tester was administered to measure the wear volume losses and resultant wear rates under 0.1 and 0.2N loads, a 0.024m/s tape speed, and a 1mm ruby sphere diameter. An atomic force microscope (AFM) established the wear scar volume losses as well as the surface arithmetic roughness (RA) and root mean square roughness (RMS) of the films. The amorphous microstructure was verified by X-ray diffractometry. There was a decreasing trend in the plastic contact damage resistance, hardness, elastic modulus, and wear resistance of the films with increased amounts of Ar gas pressure; on the other hand, annealing of the lower Ar content films generated an increase in these properties compared to the as-deposited films. Atomic force microscopy revealed a more pronounced change in surface features and roughness for the in situ annealed films.


2018 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Kartik D. Bhagat ◽  
Anvesha V. Ganorkar ◽  
Atul T. Hemke ◽  
Krishna R. Gupta

Objective: A simple, precise and accurate UV-spectrophotometric method is developed and statistically validated for estimation of Testosterone in gel formulation. The proposed method includes using regression equation, area under curve (AUC), first order derivative and second order derivative spectroscopic method.Methods: based on measurement of absorbance at a selected wavelength using UV-visible spectrophotometer with 1cm matched quartz cell and acetonitrile as a solvent. All developed methods obeyed Beer’s-lambert’s law in the concentration range of 5-25μg/mL, with correlation coefficient value less than 1.Results: The percent amount of drug estimated was nearly 100%, found to be a good agreement with label claim of marketed gel formulation. The recovery study was carried out at three different levels, the validation study data was found to be statistically significant as all the statistical parameters are within the acceptance range (% RSD <2.0 and S.D. <±2.0).Conclusions: The results of estimation and validation parameters like accuracy, precision, ruggedness, linearity and range were studied for all the developed methods and were found to be within limits. The results obtained were statistically compared using paired t-test and one way ANOVA analysis. The proposed method can be adopted for routine quality control for estimation of drug in formulation.


2011 ◽  
Vol 95 (2) ◽  
pp. 809-815 ◽  
Author(s):  
G. B. González ◽  
T. O. Mason ◽  
J. S. Okasinski ◽  
T. Buslaps ◽  
V. Honkimäki
Keyword(s):  
Ex Situ ◽  

Sign in / Sign up

Export Citation Format

Share Document