Properties of Oxide-Nitride-Oxide Stacked Films for Gate Insulation in Active Matrix Displays

1992 ◽  
Vol 284 ◽  
Author(s):  
D. Waechter ◽  
T. Billard ◽  
P. Gogna

ABSTRACTOxide-nitride-oxide (ONO) stacked films deposited by plasma enhanced chemical vapor deposition (PECVD) have been studied for use as the gate dielectric in active matrix displays. Good electrical properties were obtained for cadmium selenide thin film transistors (TFTs) with either ONO or single layer SiO2 gate insulation. However, the dielectric strength was up to twice as large for the ONO films. This improvement was observed with both Al and Cr electrodes.The individual oxide layers had compressive stress, while the individual nitride layers had tensile stress. When combined in an ONO structure, a net tensile stress of relatively low magnitude was obtained. Index of refraction and infrared absorption measurements indicated that the oxide films were oxygen deficient. Hydrogen incorporation was present for both the oxide and nitride films.

2021 ◽  
pp. 152808372110242
Author(s):  
Kadir Bilisik ◽  
Mahmuda Akter

In this paper, graphene, graphene/matrix, and graphene/fiber nanocomposites, including their synthesis process, fabrication, properties, and potential applications, were reviewed. It was found that several synthesis techniques for nanographene were developed, such as liquid-phase exfoliation and chemical vapor deposition. In addition, some fabrication processes of graphene/matrix and graphene/fiber-based nanocomposites were made, including in-situ polymerization, nanostitching in that single layer nano graphene plate could be interconnected by means of carbon nanotube stitching, resin transfer molding, and vacuum-assisted resin transfer molding. Several properties, including mechanical, thermal, and electrical, on the graphene nanoplatelets materials were summarized in this review paper. It was realized that graphene, graphene/matrix, and graphene/fiber nanocomposites have extraordinary mechanical, thermal, and electrical properties used in advanced engineering applications, including soft robotics, microelectronics, energy storage, biomedical and biosensors as well as textile industry.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 267
Author(s):  
Minyu Bai ◽  
Zhuoman Wang ◽  
Jijie Zhao ◽  
Shuai Wen ◽  
Peiru Zhang ◽  
...  

Weak absorption remains a vital factor that limits the application of two-dimensional (2D) materials due to the atomic thickness of those materials. In this work, a direct chemical vapor deposition (CVD) process was applied to achieve 2D MoS2 encapsulation onto the silicon nanopillar array substrate (NPAS). Single-layer 2D MoS2 monocrystal sheets were obtained, and the percentage of the encapsulated surface of NPAS was up to 80%. The reflection and transmittance of incident light of our 2D MoS2-encapsulated silicon substrate within visible to shortwave infrared were significantly reduced compared with the counterpart planar silicon substrate, leading to effective light trapping in NPAS. The proposed method provides a method of conformal deposition upon NPAS that combines the advantages of both 2D MoS2 and its substrate. Furthermore, the method is feasible and low-cost, providing a promising process for high-performance optoelectronic device development.


2003 ◽  
Vol 12 (3-7) ◽  
pp. 632-635 ◽  
Author(s):  
M. Camero ◽  
R. Gago ◽  
C. Gómez-Aleixandre ◽  
J.M. Albella

1996 ◽  
Vol 423 ◽  
Author(s):  
Yalei Kuang ◽  
Naesung Lee ◽  
Andrzej Badzian ◽  
Teresa Badzian ◽  
Tien T. Tsong

AbstractBoron-doped homoepitaxial diamond films were grown on natural diamond (001) substrates using microwave-assisted plasma chemical vapor deposition techniques. The surface structures were investigated using scanning tunneling microscopy (STM). This showed a dimertype 2×1 reconstruction structure with single-layer steps where dimer rows on the upper terrace are normal to or parallel to the step edges. We found that dimer rows parallel to the step edges are much longer than those normal to the step edges. The nearly single-domain surface structure observed by STM is in agreement with the low-energy electron diffraction (LEED) patterns from these surfaces. The high atomic resolution STM image showed that the local 1×1 configurations exist.


2013 ◽  
Vol 205-206 ◽  
pp. 284-289 ◽  
Author(s):  
David Lysáček ◽  
Petr Kostelník ◽  
Petr Pánek

We report on a novel method of low pressure chemical vapor deposition of polycrystalline silicon layers used for external gettering in silicon substrate for semiconductor applications. The proposed method allowed us to produce layers of polycrystalline silicon with pre-determined residual stress. The method is based on the deposition of a multilayer system formed by two layers. The first layer is intentionally designed to have tensile stress while the second layer has compressive stress. Opposite sign of the residual stresses of the individual layers enables to pre-determine the residual stress of the gettering stack. We used scanning electron microscopy for structural characterization of the layers and intentional contamination for demonstration of the gettering properties. Residual stress of the layers was calculated from the wafer curvature.


2021 ◽  
Vol 883 ◽  
pp. 303-308
Author(s):  
Peter Hetz ◽  
Matthias Lenzen ◽  
Martin Kraus ◽  
Marion Merklein

Numerical process design leads to cost and time savings in sheet metal forming processes. Therefore, a modeling of the material behavior is required to map the flow properties of sheet metal. For the identification of current yield criteria, the yield strength and the hardening behavior as well as the Lankford coefficients are taken into account. By considering the anisotropy as a function of rolling direction and stress state, the prediction quality of anisotropic materials is improved by a more accurate modeling of the yield locus curve. According to the current state of the art, the layer compression test is used to determine the corresponding Lankford coefficient for the biaxial tensile stress state. However, the test setup and the test procedure is quite challenging compared to other tests for the material characterization. Due to this, the test is only of limited suitability if only the Lankford coefficient has to be determined. In this contribution, a simplified test is presented. It is a reduction of the layer compression test to one single sheet layer. So the Lankford coefficient for the biaxial tensile stress state can be analyzed with a significantly lower test effort. The results prove the applicability of the proposed test for an easy and time efficient characterization of the biaxial Lankford coefficient.


1995 ◽  
Vol 401 ◽  
Author(s):  
L. Ryen ◽  
E. Olssoni ◽  
L. D. Madsen ◽  
C. N. L. Johnson ◽  
X. Wang ◽  
...  

AbstractEpitaxial single layer (001) SrTiO3 films and an epitaxial Yba2Cu3O7-x/SrTiO3 multilayer were dc and rf sputtered on (110)rhombohedral LaAIO3 substrates. The microstructure of the films was characterised using transmission electron microscopy. The single layer SrTiO3 films exhibited different columnar morphologies. The column boundaries were due to the lattice mismatch between film and substrate. The boundaries were associated with interfacial dislocations at the film/substrate interface, where the dislocations relaxed the strain in the a, b plane. The columns consisted of individual subgrains. These subgrains were misoriented with respect to each other, with different in-plane orientations and different tilts of the (001) planes. The subgrain boundaries were antiphase or tilt boundaries.The individual layers of the Yba2Cu3O7-x/SrTiO3 multilayer were relatively uniform. A distortion of the SrTiO3 unit cell of 0.9% in the ‘001’ direction and a Sr/Ti ratio of 0.62±0.04 was observed, both in correspondence with the single layer SrTiO3 films. Areas with different tilt of the (001)-planes were also present, within each individual SrTiO3 layer.


1994 ◽  
Vol 343 ◽  
Author(s):  
Hideo Miura ◽  
Asao Nishimura

ABSTRACTInternal stress change of phosphorus-doped silicon thin films during crystallization is measured by detecting substrate curvature change using a scanning laser microscope. The films are deposited in an amorphous phase by chemical vapor deposition using Si2H6 gas. The deposited films have compressive stress of about 200 MPa. The internal stress changes significantly to a tensile stress of about 800 MPa at about 600 °C due to shrinkage of the films during crystallization. The high tensile stress can be relaxed by annealing above 800 °C. The phosphorus doping changes the crystallization process of the films and their final residual stress.


2D Materials ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 015017 ◽  
Author(s):  
Ingrid Liao ◽  
David Barroso ◽  
Ariana E Nguyen ◽  
Natalie Duong ◽  
Quinten B Yurek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document