Deep-UV, Light-Assisted, Wet Etching of Compound Semiconductors

1983 ◽  
Vol 29 ◽  
Author(s):  
D. V. Podlesnik ◽  
H. H. Gilgen ◽  
R. M. Osgood

ABSTRACTDeep-UV, laser-light-assisted, wet etching of compound semiconductors is reported. As ccmpared to results with visible light, the etching rates per unit power density in the ultraviolet are considerably faster; a factor of >30 is seen under typical conditions. A correlation between the UV absorption in different etching solutions and the light-enhanced etching rates is examined. Gratings with 100-nm resolution have been produced and high-aspect-ratio via-holes have been etched.

2007 ◽  
Vol 329 ◽  
pp. 169-174 ◽  
Author(s):  
Hiroshi Matsuura ◽  
Kazuhiro Hane ◽  
Yasuhiro Kunieda ◽  
Nobuhito Yoshihara ◽  
Ji Wang Yan ◽  
...  

The state of the wheel surface after dressing is important for processing of a surface to the nano-order level. A laser dresser was developed using ultraviolet (UV) laser light, which imparts no mechanical damage to the resin bond. One feature of this system is that UV laser energy is transmitted by a special optical fiber for UV light, and is transmitted only to the resin bond. Using this newly developed laser dresser, it was possible to ablate the resin bond to a depth of over 2 microns using a fiber with a core diameter of 200 microns.


Author(s):  
Sudarshan Hegde ◽  
G. K. Ananthasuresh

The focus of this paper is on designing useful compliant micro-mechanisms of high-aspect-ratio which can be microfabricated by the cost-effective wet etching of (110) orientation silicon (Si) wafers. Wet etching of (110) Si imposes constraints on the geometry of the realized mechanisms because it allows only etch-through in the form of slots parallel to the wafer’s flat with a certain minimum length. In this paper, we incorporate this constraint in the topology optimization and obtain compliant designs that meet the specifications on the desired motion for given input forces. Using this design technique and wet etching, we show that we can realize high-aspect-ratio compliant micro-mechanisms. For a (110) Si wafer of 250 μm thickness, the minimum length of the etch opening to get a slot is found to be 866 μm. The minimum achievable width of the slot is limited by the resolution of the lithography process and this can be a very small value. This is studied by conducting trials with different mask layouts on a (110) Si wafer. These constraints are taken care of by using a suitable design parameterization rather than by imposing the constraints explicitly. Topology optimization, as is well known, gives designs using only the essential design specifications. In this work, we show that our technique also gives manufacturable mechanism designs along with lithography mask layouts. Some designs obtained are transferred to lithography masks and mechanisms are fabricated on (110) Si wafers.


1995 ◽  
Vol 416 ◽  
Author(s):  
Robert D. Mckeag ◽  
Michael D. Whitfield ◽  
Simon Sm Chan ◽  
Lisa Ys Pang ◽  
Richard B. Jackman

ABSTRACTThin film diamond has been used to fabricate a photodetector which displays high sensitivity to deep UV light, with an external quantum efficiency of greater than one, a dark current of less than 0.1nA and which is near ‘blind’ to visible light.


Sign in / Sign up

Export Citation Format

Share Document