Low Energy Ion Implantation / Deposition as a Film Synthesis and Bonding Tool

1993 ◽  
Vol 316 ◽  
Author(s):  
André Anders ◽  
Simons Anders ◽  
Ian G. Brown ◽  
Igor C. Ivanov

ABSTRACTWe describe a novel means for the production of atomically-bonded thin films of a wide range of materials. The technique is a plasma and ion beam method involving synthesis of the desired surface film by plasma deposition and the simultaneous atomic mixing of the film into the substrate by low energy ion implantation from the surrounding plasma. Vacuum-arc-produced metal plasma is used for the metallic component of the film and gases can be added to form compound films. Multiple plasma generators can be used, and films of single metals, alloys, ceramics and multilayers can be formed. By repetitively pulse biasing the substrate during plasma deposition, the growing film is subjected to energetic ion bombardment, and direct and recoil ion implantation is induced. The depositing film is thereby atomically mixed to the substrate as it is formed. The films are atomically smooth, can be anywhere from a few monolayers to microns in thickness, and the interface or mixed transition zone can be tailored. Here we outline the basic plasma physics of the method and describe a number of novel surfaces which have been formed with excellent properties.

1993 ◽  
Vol 301 ◽  
Author(s):  
Ian G. Brown

ABSTRACTSome metal plasma techniques have been developed that provide a convenient means for the doping of semiconductor hosts with rare-earths. These plasma and ion beam tools are based on the application of vacuum arc discharges for the formation of dense rare-earth plasmas which then can be used in a number of ways for doping and otherwise introducing the rare-earths into substrate materials. At the low energy end of the spectrum, the streaming metal plasma can be used for the deposition of thin films, and if more than one plasma source is used then of multilayer structures also. Or by building the vacuum-arc rare-earth plasma generator into an ion source configuration, high current ion beams can be produced for doing high energy ion implantation; alternatively the substrate can be immersed in the streaming rare-earth plasma and by using appropriately phased high voltage substrate pulsing and pulsed plasma generation, plasma immersion ion implantation can be done. Between these two limiting techniques – low energy plasma deposition and high energy ion implantation – a spectrum of hybrid methods can be utilized for rare earth doping. We've made a number of plasma and ion sources of this kind, and we've doped a wide range of substrates with a wide range of rare-earths. For example we've implanted species including Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er and Yb into host materials including Si, GaAs, InP and more. The implantation dose can range from a low of about 1013 cm−2 up to as high as about 1017 cm−2, and the ion energy can be varied from a few tens of eV up to about 200 keV. Here we review these vacuum-arc-based plasma methods for rare-earth doping, describing both the tools and techniques that are available and the applications to which we've put the methods in our laboratory.


2011 ◽  
Vol 108 ◽  
pp. 176-182
Author(s):  
Hui Yuan Ya ◽  
Wei Dong Wang ◽  
Qiu Fang Chen ◽  
Guang Yong Qin ◽  
Zhen Jiao ◽  
...  

The current knowledge of the transcriptome is limited to understand the exact molecular mechanism of the ion-implantation biological effects on cereals. In order to investigating the overall characteristics of the transcript profiles associated with these puzzling biological effects. We used the Agilent Rice Oligo Microarray (4×44K)Genome Array to learn the molecular mechanism in rice responding to ion-implantation. Rice seeds were implanted by the Nitrogen ion beam and their vigor index was investigated at ten days after germination. Total RNAs was extracted from the rice seedlings at 96 hour after germination and hybridized by the genome genechip. The results of measuring of the vigor index showed that lower-dose implantation of the nitrogen ion beam (6×1017 N+/cm2) promoted the vigor index of the rice seedlings and the higher-dose implantation (9×1017 N+/cm2) damaged the rice seedlings because of the smaller vigor index than the control. The analysis of the genechip array showed that there were 982 transcripts expressed differentially (fold change>2 and P value<0.05) including 429 up-regulated transcripts and 553 down-regulated transcripts under the dose3 6×1017 N+/cm2. 30 out of the 553 down-regulated transcripts were involved in 48 pathways. 14 out of these 30 transcripts were associated with more than two interrelated pathways. Os04g0518400 (Phenylalanine ammonia-lyase 2 (PAL; EC 4.3.1.5; down-regulated 3.3 folds; p value=0.005) were involved in 7 pathways, Os07g0446800 (Hexokinase; dwon-regulated 2.8 folds; p value =0.006) were involved in 12 pathways, and Os02g0730000 (Mitochondrial aldehyde dehydrogenase ALDH2a; down-regulated 2.2 folds; p value=0.019) were involved in 13 pathways. These results revealed that down-regulated genes involving important pathways were compatible with the distinct cellular events in response to implantation of low-energy ion beam and supplied the first comprehensive and comparative molecular information for further understanding the mechanism underlying implantation of the low-energy nitrogen ion beam.


2000 ◽  
Vol 648 ◽  
Author(s):  
X.Q. Cheng ◽  
H.N. Zhu ◽  
B.X. Liu

AbstractFractal pattern evolution of NiSi2 grains on a Si surface was induced by high current pulsed Ni ion implantation into Si wafer using metal vapor vacuum arc ion source. The fractal dimension of the patterns was found to correlate with the temperature rise of the Si substrate caused by the implanting Ni ion beam. With increasing of the substrate temperature, the fractal dimensions were determined to increase from less than 1.64, to beyond the percolation threshold of 1.88, and eventually up to 2.0, corresponding to a uniform layer with fine NiSi2 grains. The growth kinetics of the observed surface fractals was also discussed in terms of a special launching mechanism of the pulsed Ni ion beam into the Si substrate.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (8) ◽  
pp. 52-56 ◽  
Author(s):  
Joseph V. Mantese ◽  
Ian G. Brown ◽  
Nathan W. Cheung ◽  
George A. Collins

Plasma-immersion ion implantation (PIII) is an emerging technology for the surface engineering of semiconductors, metals, and dielectrics. It is inherently a batch-processable technique that lends itself to the implantation of large numbers of parts simultaneously. It thus offers the possibility of introducing ion implantation into manufacturing processes that have not traditionally been feasible using conventional implantation.In PIII the part to be treated is placed in a vacuum chamber in which is generated a plasma containing the ions of the species to be implanted. The plasma based implantation system does not use the extraction and acceleration methods of conventional mass-analyzing implanters. Instead the sample is (usually) repetitively pulsed at high negative voltages (in the 2–300 kV range) to implant the surface with a flux of energetic plasma ions as shown in Figure 1. When the negative bias is applied to a conducting object immersed in a plasma, electrons are repelled from the surrounding region toward the walls of the vacuum chamber, which is usually held at ground potential. Almost all the applied voltage difference occurs across this region, which is generally known as a sheath or cathode fall region. Ions are accelerated across the sheath, producing an ion flux to the entire exposed surface of the work-piece. Because the plasma surrounds the sample and because the ions are accelerated normal to the sample surfaces, implantation occurs over all surfaces, thereby eliminating the need for elaborate target manipulation or masking systems commonly required for beam line implanters. Ions implanted in the work-piece must be replaced by an incoming flow of ions at the sheath boundary, or the sheath will continue to expand into the surrounding plasma.Plasma densities are kept relatively low, usually between 108 and 1011 ions per cm3. Ions must be replenished near the workpiece by either diffusion or ionization since the workpiece (in effect) behaves like an ion pump. Gaseous discharges with thermionic, radio-frequency, or microwave ionization sources have been successfully used.Surface-enhanced materials are obtained through PIII by producing chemical and microstructural changes that lead to altered electrical properties (e.g., semiconductor applications), and low-friction and superhard surfaces that are wear- and corrosion-resistant. When PIII is limited to gaseous implant species, these unique surface properties are obtained primarily through the formation of nitrides, oxides, and carbides. When applied to semiconductor applications PIII can be used to form amorphous and electrically doped layers. Plasma-immersion ion implantation can also be combined with plasma-deposition techniques to produce coatings such as diamondlike carbon (DLC) having enhanced properties. This latter variation of PIII can be operated in a high ionenergy regime so as to do ion mixing and to form highly adherent films, and in an ion-beam-assisted-deposition (IBAD)-like ion-energy regime to produce good film morphology and structure.


2021 ◽  
Vol 248 ◽  
pp. 04006
Author(s):  
Anatoly Borisov ◽  
Boris Krit ◽  
Igor Suminov ◽  
Mikhail Ovchinnikov ◽  
Sergey Tikhonov

The combined effect of ion and laser beams on physical and mechanical properties of metal and alloy surfaces has been studied. The technique of determining the main parameters of polyenergetic ion implantation using a vacuum-arc ion source is proposed and evaluated. It is found that treatment with titanium ions and the subsequent laser thermal hardening increase microhardness of steel 45 and U8 up to 6 times.


2012 ◽  
Vol 455-456 ◽  
pp. 471-476 ◽  
Author(s):  
Shi Chang Li ◽  
Zhao Yang Zhu ◽  
Shao Bin Gu ◽  
Hong Xia Liu ◽  
Dong Dong Wang

Low-energy ion implantation is a new mutation source, which has the characteristic of light damage, high mutation rate, and a broad spectrum mutation. In order to obtain industrial strain with high L-(+)-lactic acid yield, the original strain Lactobacillus casei CICC6028 was mutated by nitrogen ion beam implantation. It was found that the original strain had a higher positive mutation rate when the output power was 10keV and the dose of N+ implantation was 50×2.6×1013 ions/cm2. The mutant N-2 was obtained for many times screening and its yield of L-(+)-lactic acid was 136 g/L which was improved by 38.8% compared with the original strain whose yield of L-(+)-lactic acid was 98g/L as the cultivation time was 120h. The initial screening methods were also studied in this work but it was found that the transparent halos method was unavailable, so the initial screening was performed by shake flask fermentation. HPLC chromatogram was used to analyse the purity of L-(+)-lactic acid that was produced by the mutant strain N-2, and the result indicated the main production of N-2 was L-(+)-lactic acid and there was no other acid almost.


1988 ◽  
Vol 144 ◽  
Author(s):  
B. Elman ◽  
Emil S. Koteles ◽  
P. Melman ◽  
C. A. Armiento

ABSTRACTLow energy ion implantation followed by rapid thermal annealing (RTA) was utilized to modify exciton transition energies of MBE- rown GaAs/AlGaAs quantum wells (QW). The samples were irradiated with an 75As ion beam with an energy low enough that the depth of the disordered region was spatially separated from the QWs. After RTA, exciton energies (determined using optical spectroscopy) showed large increases which were dependent on QW widths and the implantation fluence with no significant increases in peak linewidths. These energy shifts were interpreted as resulting from the modification of the shapes of the as-grown QWs from square (abrupt interfaces) to rounded due to enhanced Ga and Al interdiffusion in irradiated areas. These results are similar to our data on the RTA of the same structures capped with SiO2 and are consistent with the model of enhanced intermixing of Al and Ga atoms due to diffusion of vacancies generated near the surface.


2000 ◽  
Vol 647 ◽  
Author(s):  
X.Q. Cheng ◽  
H.N. Zhu ◽  
B.X. Liu

AbstractSamarium ion implantation was conducted to synthesize Sm-disilicide films on silicon wafers, using a metal vapor vacuum arc ion source and the continuous SmSi2 films were directly obtained with neither external heating during implantation nor post-annealing. Diffraction and surface morphology analysis confirmed the formed Sm-disilicilde films were of a fine crystalline structure under appropriate experimental conditions. Besides, the formation mechanism of the SmSi2phase is also discussed in terms of the temperature rise caused by ion beam heating and the effect of ion dose on the properties of the SmSi2films.


2011 ◽  
Author(s):  
T. V. Kulevoy ◽  
G. N. Kropachev ◽  
D. N. Seleznev ◽  
P. E. Yakushin ◽  
R. P. Kuibeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document