Characterization of CMOS Devices in 0.5-μm Silicon-On-Sapphire Films Modified by Solid Phase Epitaxy and Regrowth (Spear)

1984 ◽  
Vol 33 ◽  
Author(s):  
P.K. Vasudev ◽  
D.C. Mayer

ABSTRACTComplementary Metal-Oxide-Semiconductor (CMOS) devices and circuits with minimum feature sizes of about 1 μm were fabricated in 0.5-μm-thick epitaxial Silicon-On-Sapphire (SOS) films. The films were modified by ion implantation and subsequent solid phase recrystallization processes which reduced the total microtwin concentrations in the Si layers by more than a hundredfold, while increasing electron and hole channel mobilities between 40 to 50%. Leakage currents were reduced by over 2 orders of magnitude, while drive currents and subthreshold slopes showed significant improvements over as–grown SOS films. Propagation delays of less than 80 psec were obtained for CMOS/SOS inverters with Leff = 0.6 μm.

2007 ◽  
Vol 46 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Genshiro Kawachi ◽  
Yoshiaki Nakazaki ◽  
Hiroyuki Ogawa ◽  
Masayuki Jyumonji ◽  
Noritaka Akita ◽  
...  

2015 ◽  
Vol 48 (3) ◽  
pp. 655-665 ◽  
Author(s):  
Andrei Benediktovitch ◽  
Alexei Zhylik ◽  
Tatjana Ulyanenkova ◽  
Maksym Myronov ◽  
Alex Ulyanenkov

Strained germanium grown on silicon with nonstandard surface orientations like (011) or (111) is a promising material for various semiconductor applications, for example complementary metal-oxide semiconductor transistors. However, because of the large mismatch between the lattice constants of silicon and germanium, the growth of such systems is challenged by nucleation and propagation of threading and misfit dislocations that degrade the electrical properties. To analyze the dislocation microstructure of Ge films on Si(011) and Si(111), a set of reciprocal space maps and profiles measured in noncoplanar geometry was collected. To process the data, the approach proposed by Kaganer, Köhler, Schmidbauer, Opitz & Jenichen [Phys. Rev. B, (1997),55, 1793–1810] has been generalized to an arbitrary surface orientation, arbitrary dislocation line direction and noncoplanar measurement scheme.


Sign in / Sign up

Export Citation Format

Share Document