A Study of Electrically Active Defects Induced by Pulsed Electron Beam Annealing In (100) N-Type Virgin Silicon

1984 ◽  
Vol 35 ◽  
Author(s):  
M.S. Doghmane ◽  
D. Barbier ◽  
A. Laugier

ABSTRACTAu/Si Schottky contacts have been used as test structures to investigate defects induced in virgin C.Z (100) N-type silicon after irradiation with a 12 to 20 KeV mean energy electron beam pulse. A thin and highly damaged surface layer was observed from a fluence threshold of 1 J/cm2. In addition electron traps were detected in the PEBA induced melting layer with concentrations in the 1012-1013 cm-3 range. Their depth profiles have been related to the PEBA induced melting layer thickness. Quenching of multidefect complexes is the most probable mechanism for electron trap generation in the processed layer.

Author(s):  
Yu. F. Ivanov ◽  
O. L. Khasanov ◽  
M. S. Petyukevich ◽  
V. V. Polisadova ◽  
Z. G. Bikbaeva ◽  
...  

The elemental constituents, phase composition and substructural evolution were investigated in the article in the silicon carbide ceramics surface layer which was subjected to the intense pulsed electron beam the density of the electron beam being varied. It was shown that the ceramic layer surface's structure and phase conditions were controlled by the electron beam characteristics. The SiC-ceramics surface layer nanostructuring was detected and the electron beam treatment conditions which lead to this effect were defined.


2016 ◽  
Vol 35 (7) ◽  
pp. 715-721
Author(s):  
Jike Lyu ◽  
Bo Gao ◽  
Liang Hu ◽  
Shuaidan Lu ◽  
Ganfeng Tu

AbstractIn this paper, the effects of high current pulsed electron beam (HCPEB) on the microstructure evolution of casting HPb59-1 (Cu 57.1 mass%, Pb 1.7 mass% and Zn balance) alloy were investigated. The results showed a “wavy” surface which was formed with Pb element existing in the forms of stacking block and microparticles on the top surface layer after treatment. Nanocrystalline structures including Pb grains and two phases (α and β) were formed on the top remelted layer and their sizes were all less than 100 nm. The disordered β phase was generated in the surface layer after HCPEB treatment, which is beneficial for the improvement of surface properties. Meanwhile, there was a large residual stress on the alloy surface, along with the appearance of microcracks, and the preferred orientations of grains also changed.


2005 ◽  
Vol 475-479 ◽  
pp. 3959-3962 ◽  
Author(s):  
Sheng Zhi Hao ◽  
B. Gao ◽  
Ai Min Wu ◽  
Jian Xin Zou ◽  
Ying Qin ◽  
...  

High current pulsed electron beam (HCPEB) is now becoming a promising energetic source for the surface treatment of materials. When the concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress field induced by an abrupt thermal distribution in the interactive zone impart surface layer with improved physicochemical and mechanical properties. The present paper reports mainly our experimental research work on this new-style technique. Investigations performed with a variety of constructional materials (aluminum, carbon and mold steel, magnesium alloys) have shown that the most pronounced changes of composition, microstructure and properties occur in the near-surface layers, while the thickness of the modified layer with improved mechanical properties (several hundreds of micrometers) is significantly greater than that of the heat-affected zone due to the propagation of stress wave. The surfaces treated with either simply several pulses of bombardment or complex techniques, such as rapid alloying by HCPEB can exhibit improved mechanical and physicochemical properties to some extent.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012041
Author(s):  
N N Koval ◽  
Yu F Ivanov ◽  
V V Shugurov ◽  
A D Teresov ◽  
E A Petrikova

Abstract Steel AISI 5135 surface layer modification carried out by high-cycle high-speed melting of the “film (Si + Nb)/(steel AISI 5135) substrate” system with an intense pulsed electron beam with an impact area of several square centimeters, have been implemented in a single vacuum cycle on the “COMPLEX” setup. The regime of the system “film (Si (0.2 μm) + Nb (0.2 μm))/(steel AISI 5135) substrate” irradiation with an intense pulsed electron beam (20 J/cm2, 200 μs, 3 pulses, 3 cycles) which makes it possible to form a surface layer with high thermal stability have been revealed. This layer is characterized by high hardness, more than 3 times higher than the hardness of AISI 5135 steel in the original (ferrite-pearlite structure) and wear resistance, more than 90 times higher than the wear resistance of the initial AISI 5135 steel. It is shown that the high strength and tribological properties of steel are due to the formation of the hardening phase particles (niobium silicide of Nb5Si3 composition).


2021 ◽  
Vol 2064 (1) ◽  
pp. 012043
Author(s):  
Y Ivanov ◽  
E Petrikova ◽  
A Teresov ◽  
S Lykov ◽  
O Tolkachev ◽  
...  

Abstract Ion-plasma saturation of the surface of machine parts and mechanisms with gas elements (nitrogen, oxygen, carbon) is currently one of the most effective and widely used methods of surface hardening of metal products for various purposes in the industry of developed countries. The aim of this research is to develop a complex method for modifying the surface layer of AISI 310 steel, combining irradiation with an intense pulsed electron beam and subsequent nitriding in the plasma of a low-pressure gas discharge. As a result of the studies performed, the optimal parameters of modification were revealed, which make it possible to increase the hardness of the surface layer of steel by more than 11 times, relative to the hardness of the initial material, and 8 times, relative to the hardness of steel irradiated with a pulsed electron beam. In this case, the wear resistance of the steel exceeds the wear resistance of the original and irradiated material by more than 100 times. It has been established that the high strength and tribological properties of the modified steel are due to the formation of a two-phase (iron nitride and chromium nitride) layered nanoscale structure in the surface layer.


2011 ◽  
Vol 25 (12) ◽  
pp. 1313-1317 ◽  
Author(s):  
Xue-Tao WANG ◽  
Qing-Feng GUAN ◽  
Qian-Qian GU ◽  
Dong-Jin PENG ◽  
Yan LI ◽  
...  

2009 ◽  
Vol 79-82 ◽  
pp. 317-320
Author(s):  
Hui Zou ◽  
H.R. Jing ◽  
Sheng Zhi Hao ◽  
Chuang Dong

When high current pulsed electron beam (HCPEB) transferring its energy into a very thin surface layer within a short pulse time, super fast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved properties. In this paper, HCPEB modification of 45# carbon steel with working parameters of electron energy 25 kV, pulse duration 3.5µs, and energy density 4 J/cm2 was investigated. The microstructures of modified surface were analyzed by scanning electron microscope (SEM) of type JSM 5310 and transmission electron microscope (TEM) of type H-800. It is found that the modified surface layer can be divided into three zones: the white layer or melted layer of depth 3 to10µm, the heat and stress effecting zone 10 µm below and about 250 µm, then matrix, where a nanostructure and/or amorphous layer formed in the near-surface region. It is proved that the whole treatment process is not complex and cost-effective, and has a substantial potential to be applied in industries.


2007 ◽  
Vol 434-435 ◽  
pp. 707-709 ◽  
Author(s):  
J.X. Zou ◽  
T. Grosdidier ◽  
K.M. Zhang ◽  
B. Gao ◽  
S.Z. Hao ◽  
...  

2016 ◽  
Vol 683 ◽  
pp. 9-14
Author(s):  
Olga V. Krysina ◽  
Maria E. Rygina ◽  
Elizaveta A. Petrikova ◽  
Anton D. Teresov ◽  
Yurii F. Ivanov

The structure and properties of a Ti film – Al substrate system alloyed by an intense pulsed electron beam are studied. It is shown that electron beam melting of this system provides the formation of a multiphase submicrocrystalline structure with high strength and tribological properties in the surface layer. Irradiation modes, which allow an increase in the microhardness of the material and a decrease in its wear rate, are defined. Physical substantiation of this phenomenon is given.


Sign in / Sign up

Export Citation Format

Share Document