Effect of Structure, Stress, Strain, and Alloying on the Hardness of Fe(001)/Pt(001) Epitaxial Multilayers

1994 ◽  
Vol 356 ◽  
Author(s):  
B. J. Daniels ◽  
W. D. Nix ◽  
B. M. Clemens

AbstractThe hardness of epitaxial sputter-deposited Fe(001)/Pt(001) multilayers grown on single crystal MgO(001) has been previously evaluated as a function of composition wavelength, Λ. Nanoindentation results reveal that the hardness is enhanced over that expected from a simple rule of mixtures by a factor of approximately 2.5 for bilayer spacings from 20 to 125 Å. In this paper we investigate possible causes of this hardness enhancement by determining the stress, strain, and alloying in each layer of the multilayer as a function of Λ. Accurate in-plane and out-of-plane lattice parameter measurements were obtained via x-ray diffraction using synchrotron radiation. The stress state and the extent of alloying in each layer as a function of Λ was determined by using the appropriate elastic constants for each component. The stress, strain, and amount of alloying in the Pt layer were near zero for 25≤Λ≤121 Å. The Fe layer exhibited large stresses and strains which relaxed with increasing Λ for 44≤Λ≤121 Å. For Λ=25 Å, the metastable FCC structure was adopted by the Fe film. The amount of alloying also varied from approximately 11 at.% Pt for Λ=44 Å to 5 at.% Pt for Λ=121 Å. Since the structure, film stress, amount of strain relaxation, and extent of alloying vary over this range of Λ while the hardness does not, we conclude that the hardness enhancement in these films must be controlled by other factors. Nevertheless the investigation of these basic film properties has enhanced our understanding of the structure-property relationships that give rise to strengthening in multilayer thin films.

1993 ◽  
Vol 312 ◽  
Author(s):  
B. J. Daniels ◽  
N. M. Rensing ◽  
J. A. Bain ◽  
S. Brennan ◽  
B. M. Lairson ◽  
...  

AbstractThe strain relaxation of sputter-deposited epitaxial Fe on Cu(001)/MgO(001) was observed in-situ for coverages of I to 200 equivalent monolayers of Fe. Grazing incidence x-ray scattering (GIXS) with synchrotron radiation allowed the precise determination of the in-plane strain in the Fe film. The highest observed elastic strain for the Fe was -10.3% which is in agreement with the lattice parameter mismatch between Fe and Cu for both (001)- and {211}-oriented growth. In-plane rocking curves revealed a bifurcation of the Fe(110) and Fe(220) peaks which is due to the rotation of islands to reduce strain energy. The angle of rotation of these islands was found to depend upon the amount of strain relaxation that had occurred in each island, in agreement with a simple theory for strain relaxation via the creation of a misfit dislocation network. The absence of Fe(200) intensity at small Fe thicknesses, coupled with out-of-plane symmetric and pole figure scans, suggest that Fe islands are tilted out of the plane of the sample about the Fe<110> axes by an angle consistent with Fe{211}-oriented growth. At larger thicknesses Fe(001) growth becomes dominant.


1995 ◽  
Vol 382 ◽  
Author(s):  
B.J. Daniels ◽  
W.D. Nix ◽  
B.M. Clemens

ABSTRACTPolycrystalline Fe/Pt multilayers of varying bilayer period, Λ, were sputter deposited onto SiO2 at room temperature. Film structure was characterized by x-ray diffraction, hardness was determined using nanoindentation, and stresses were examined with wafer curvature. The Fe layers were shown to be predominantly {110} oriented while the Pt layers were mostly {111} oriented. The hardnesses of these multilayer films were enhanced over the rule of mixtures value by a factor of almost 3 and exhibited a dependence on Λ which was similar to that previously observed in epitaxial Fe(001)/Pt(001) multilayers. The hardnesses of the polycrystalline multilayers were higher than those of the epitaxial multilayers, presumably due to grain boundary strengthening in these films. Film stress was large (∼1.5 GPa) and compressive, resulting in buckling-driven delamination of the film from the substrate for films with 40≤Λ≤100 Å. Delamination occurred in the “telephone cord” morphology and was observed in real time. A qualitative discussion of our observations of this delamination mechanism is presented.


2002 ◽  
Vol 720 ◽  
Author(s):  
N. Navi ◽  
J.S. Horwitz ◽  
H.-D. Wu ◽  
S.B. Qadri

AbstractBaxSr(1-x)TiO3 films (BST) with x=0.5, 0.6, 0.7, containing 1% W, were grown by pulsed laser deposition on MgO (001) substrates in an oxygen pressure from 3 to 500 mTorr, at a substrate temperature of 720 C. The crystal structure of the film, as determined from x-ray diffraction, was fit to a tetragonal distortion of a cubic lattice having two in-plane lattice parameters. The in and out-of-plane lattice parameters c, a, á, and lattice distortion (a/c and á/c) were calculated from the positions of the measured BST reflections ((004), (024) and (224)). The dielectric properties of the film at 2 GHz were measured using gap capacitors deposited on top of the dielectric film, at room temperature. For all compositions, as a function of the oxygen deposition pressure, a peak in the change in the dielectric constant, as a function of an applied electric field (0 – 80 kV/cm), was observed for films deposited in 50 mTorr of oxygen. Unlike the pure BST, the dielectric Q was insensitive to the oxygen deposition pressure. The largest Kfactor (K=(ε(0)-ε(V)/ε(0) x Q(0)) for films deposited from Ba0.6Sr0.4TiO3 target were observed in a film that had a minimum in-plane strain, where a~á.


1997 ◽  
Vol 474 ◽  
Author(s):  
J-P. Maria ◽  
S. Trolier-McKinstry ◽  
D. G. Schlom

ABSTRACTEpitaxial SrRuO3 films were prepared on (001) SrTiO3 substrates by pulsed laser deposition. The film structure was characterized by 4-circle x-ray diffraction and the electrical behavior by temperature dependent resistivity measurements. With variations in the deposition conditions, significant changes in both structural and electrical properties were observed. When deposited under conditions favoring appreciable energetic bombardment, the SrRuO3 films on SrTiO3 exhibited extended in and out-of-plane lattice constants and increased values of resistivity; in addition, a depression of the Curie temperature was measured. SrRuO3 deposited under less aggressive conditions displayed structures and properties more similar to those associated with bulk crystals.


2017 ◽  
Vol 50 (1) ◽  
pp. 288-292 ◽  
Author(s):  
Paulina Komar ◽  
Gerhard Jakob

Epitaxial multilayers and superlattice (SL) structures are gaining increasing importance as they offer the opportunity to create artificial crystals with new functionalities. These crystals deviate from the parent bulk compounds not only in terms of the lattice constants but also in the symmetry classification, which renders calculation of their X-ray diffraction (XRD) patterns tedious. Nevertheless, XRD is essential to get information on the multilayer/SL structure such as, for example, out-of-plane lattice constants, strain relaxation and period length of the crystalline SL. This article presents a powerful yet simple program, based on the general one-dimensional kinematic X-ray diffraction theory, which calculates the XRD patterns of tailor-made multilayers and thus enables quantitative comparison of measured and calculated XRD data. As the multilayers are constructed layer by layer, the final material stack can be entirely arbitrary. Moreover, CADEM is very flexible and can be straightforwardly adapted to any material system. The source code of CADEM is available as supporting material for this article.


2020 ◽  
Vol 235 (6-7) ◽  
pp. 213-223
Author(s):  
Hilke Petersen ◽  
Lars Robben ◽  
Thorsten M. Gesing

AbstractThe temperature-dependent structure-property relationships of the aluminosilicate perrhenate sodalite |Na8(ReO4)2|[AlSiO4]6 (ReO4-SOD) were analysed via powder X-ray diffraction (PXRD), Raman spectroscopy and heat capacity measurements. ReO4-SOD shows two phase transitions in the investigated temperature range (13 K < T < 1480 K). The first one at 218.6(1) K is correlated to the transition of dynamically ordered $P\overline{4}3n$ (> 218.6(1 K) to a statically disordered (<218.6(1) K) SOD template in $P\overline{4}3n$. The loss of the dynamics of the template anion during cooling causes an increase of disorder, indicated by an unusual intensity decrease of the 011-reflection and an increase of the Re-O2 bond length with decreasing temperature. Additionally, Raman spectroscopy shows a distortion of the ReO4 anion. Upon heating the thermal expansion of the sodalite cage originated in the tilt-mechanism causes the second phase transition at 442(1) K resulting in a symmetry-increase from $P\overline{4}3n$ to $Pm\overline{3}n$, the structure with the sodalites full framework expansion. Noteworthy is the high decomposition temperature of 1320(10) K.


2004 ◽  
Vol 844 ◽  
Author(s):  
David J. Scurr ◽  
Stephen J. Eichhorn

ABSTRACTThis study uses various characterisation techniques on the razor shell (Ensis siliqua), to relate the shell's microstructure to its mechanical properties. Scanning electron microscopy (SEM) has shown that the outer and inner regions of the shell are composed of simple and complex crossed lamellar microstructures respectively. These layers are interspersed by prismatic layers of a completely different crystallographic orientation. Nanoindentation and microhardness measurements have shown that the structure is anisotropic, and Raman band shifts have been observed within these indented/deformed areas of shell, showing that the microstructure deforms rather than generating surface damage. The use of energy variable synchrotron X-ray diffraction has shown that the calcium carbonate crystals of the shell are preferentially orientated as a function of depth and that opposing residual stresses exist at the outer and inner regions of the shell. This study has analysed several microstructural features of the shell and provided an insight into how they prevent failure of the material.


2012 ◽  
Vol 706-709 ◽  
pp. 2450-2455 ◽  
Author(s):  
Zhi Fang Peng ◽  
Li Sheng Cai ◽  
Ying Ying Dang ◽  
Lei Zhao ◽  
Fang Fang Peng ◽  
...  

A so called multiphase separation method (MPSM) is proposed to quantitatively separate precipitated phases from their surrounding matrix phase in chemistry for bulk alloy/steel samples under EPMA/SEM-EDS measurement conditions. Applied examples to comparisons of the results through the MPSM with the values either cited or obtained via other analytical means relevant are indicative of the feasibility, accuracy as well as applicability of the MPSM, which deal with chemistry, amount, lattice parameter, elemental partitioning, atomic-site occupancy and stability of precipitated phases of either superalloy or heat-resistant steel samples analyzed. Successful applications of the MPSM not only show a significant improvement for difficulties in accurate quantification in phase chemistry under the EPMA/SEM-EDS measurement conditions but also provide with a useful and helpful tool to determine some other important physical quantities in alloys and steels, which make it possible to quantitatively and more widely evaluate structure-property relationships of the materials investigated through analyzing their bulk samples under EPMA/SEM-EDS measurement conditions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Olha Zhak ◽  
Oksana Karychort ◽  
Volodymyr Babizhetskyy ◽  
Chong Zheng

Abstract The title compound was prepared from the pure elements by sintering. The crystal structure was investigated by means of powder X-ray diffraction data. Ho5Pd19P12 exhibits the hexagonal Ho5Ni19P12-type structure with space group P 6 ‾ 2 m $P&#x203e;{6}2m$ , a = 13.1342(2), c = 3.9839(1) Å, R I = 0.060, R p = 0.080. The crystal structure can be described as a combination of two types of the structural units, [HoPd6P3] and [Ho3Pd10P6], respectively, mutually displaced by 1/2 along the crystallographic c axis. Quantum chemical calculations have been performed to analyze the electronic structure and provide deeper insight into the structure-property relationships. The results of the quantum chemical calculations indicate that the material features metallic bonding between Ho and Pd and covalent bonding between Pd and P.


Sign in / Sign up

Export Citation Format

Share Document