Growth of Fe/ZnSe Multilayers on GaAs (001) AND (111) by Molecular Beam Epitaxy

1995 ◽  
Vol 384 ◽  
Author(s):  
H. Abad ◽  
B. T. Jonker ◽  
C. M. Cotell ◽  
S. B. Qadri ◽  
J. J. Krebs

ABSTRACTThe growth of Fe/ZnSe/Fe multilayers on (001) and (111) GaAs substrates is reported. The samples were characterized in-situ by reflection high energy electron diffraction (RHEED), and ex situ by vibrating sample magnetometry (VSM), ferromagnetic resonance (FMR), cross sectional transmission electron microscopy (TEM), and x-ray diffraction. On the (001) surface, the quality of the layers deteriorated significantly with the growth of the first ZnSe spacer layer. In Fe/ZnSe/Fe trilayer structures, TEM revealed a well-defined layered structure, with a high density of defects in both the ZnSe spacer layer and the subsequent Fe layer. VSM and FMR clearly showed the presence of two Fe films with distinct coercive fields, with the higher coercive field attributed to the lower crystalline quality of the second Fe layer. θ-2θ xray diffraction measurements performed on samples grown on (001) GaAs substrates indicated that the ZnSe spacer layer (grown on (001) Fe) grew in a (111) orientation. Growth on GaAs(111) substrates produced better RHEED patterns for all layers with little deterioration in film quality with continued layer growth, so that the magnetic properties of the individual Fe layer could not be distinguished.

1993 ◽  
Vol 313 ◽  
Author(s):  
I. Hashim ◽  
H.A. Atwater ◽  
Thomas J. Watson

ABSTRACTWe have investigated structural and magnetic properties of epitaxial Ni80Fe20 films grown on relaxed epitaxial Cu/Si (001) films. The crystallographic texture of these films was analyzed in situ by reflection high energy electron diffraction (RHEED), and ex situ by x-ray diffraction and cross-sectional transmission electron Microscopy (XTEM). In particular, RHEED intensities were recorded during epitaxial growth, and intensity profiles across Bragg rods were used to calculate the surface lattice constant, and hence, find the critical epitaxial thickness for which Ni80Fe20 grows pseudomorphically on Cu (100). XTEM analysis indicated that the epitaxial films had atomically-abrupt interfaces which was not the case for polycrystalline Cu and Ni80Fe20 film interfaces. The Magnetic properties of these epitaxial films were Measured in situ using Magneto-optic Kerr effect magnetometry and were compared with those of polycrystalline films grown on SiO2/Si. Large Hc (∼ 35 Oe) was observed for epitaxial Ni80Fe20 films less than 3.0 nm thick whereas for increasing thickness, Hc decreased approximately monotonically to a few Oersteds. Correlations were made between magnetic properties of these epitaxial films, the strain in the film and the interface roughness obtained from XTEM analysis.


1992 ◽  
Vol 280 ◽  
Author(s):  
I. Hashim ◽  
B. Park ◽  
H. A. Atwater

ABSTRACTEpitaxial Cu thin films have been grown on H-terminated Si(OOl) substrates at room temperature by D.C. ion-beam sputter deposition in ultrahigh vacuum. The development of orientation and microstructure during epitaxial growth from the initial stages of Cu growth up to Cu thicknesses of few hundred nm has been investigated. Analysis by in-situ reflection high energy electron diffraction, thin film x-ray diffraction, and plan-view and cross-sectional transmission electron microscopy indicates that the films are well textured with Cu(001)∥ Si(001) and Cu[100]∥ Si[110]. Interestingly, it is found that a distribution of orientations occurs at the early stages of Cu epitaxy on Si(001) surface, and that a (001) texture emerges gradually with increasing Cu thickness. The effect of silicide formation and deposition conditions on the crystalline quality of Cu epitaxy is also discussed.


1993 ◽  
Vol 312 ◽  
Author(s):  
Richard Mirin ◽  
Mohan Krishnamurthy ◽  
James Ibbetson ◽  
Arthur Gossard ◽  
John English ◽  
...  

AbstractHigh temperature (≥ 650°C) MBE growth of AlAs and AlAs/GaAs superlattices on (100) GaAs is shown to lead to quasi-periodic facetting. We demonstrate that the facetting is only due to the AlAs layers, and growth of GaAs on top of the facets replanarizes the surface. We show that the roughness between the AlAs and GaAs layers increases with increasing number of periods in the superlattice. The roughness increases to form distinct facets, which rapidly grow at the expense of the (100) surface. Within a few periods of the initial facet formation, the (100) surface has disappeared and only the facet planes are visible in cross-sectional transmission electron micrographs. At this point, the reflection high-energy electron diffraction pattern is spotty, and the specular spot is a distinct chevron. We also show that the facetting becomes more pronounced as the substrate temperature is increased from 620°C to 710°C. Atomic force micrographs show that the valleys enclosed by the facets can be several microns long, but they may also be only several nanometers long, depending on the growth conditions.


1991 ◽  
Vol 220 ◽  
Author(s):  
Q. F. Xiao ◽  
J. R. Jimenez ◽  
L. J. Schowalter ◽  
L. Luo ◽  
T. E. Mitchell ◽  
...  

ABSTRACTEpitaxial Si layers have been grown under a variety of growth conditions on CoSi2 (001) by molecular beam epitaxy (MBE). The structural properties of the Si overgrowth were studied by in-situ Reflection High Energy Electron Diffraction (RHEED), as well as ex-situ MeV4He+ ion channeling and High Resolution Transmission Electron Microscopy (HRTEM). Strong influences of the CoSi2 surface reconstruction on the Si overgrowth have been observed. RHEED studies show islanding growth of Si on the CoSi2 (001) (3/√2 × √2)R45 reconstructed surface, but smooth growth of Si on the CoSi2 (001) {√2 × √2)R45 reconstructed surface, under the same growth conditions. The growth of Si on thin layers of CoSi2 (2nm-6nm) with (√2 × √2)R45 reconstructed surface at 460°C results in high crystalline quality for the Si top layer, as indicated by good channeling minimum yield (Xmin < 6%), but cross-sectional TEM shows that the CoSi2 layers are discontinuous. We also report preliminary results on Si grown on a 2 × 2 reconstructed CoSi2 (001) surface.


2004 ◽  
Vol 19 (10) ◽  
pp. 3081-3089 ◽  
Author(s):  
Hyun-Mi Kim ◽  
Sung-Soo Yim ◽  
Ki-Bum Kim ◽  
Seung-Hyun Moon ◽  
Young-Woon Kim ◽  
...  

This paper describes the growth kinetics of an interfacial MgO layer as well as those of an MgB2 layer during ex situ annealing of the evaporated amorphous boron (a-B) film under Mg vapor overpressure. A thin MgO layer is formed at the interface between a-B and Al2O3 substrate before the formation of crystalline MgB2 layer and the interfacial layer is epitaxially related with Al2O3 substrate (MgO (111)[110] // Al2O3 (0001)[1100]). The interfacial MgO layer continues to grow during the annealing, and its apparent growth rate is about 0.1 nm/min. The analysis of MgB2 layer growth kinetics using cross-sectional transmission electron microscopy reveals that there exist two distinct growth fronts at both sides of an MgB2 layer. The growth kinetics of the lower MgB2 layer obeys the parabolic rate law during the entire annealing time. The growth of the upper MgB2 layer is controlled by the surface reaction between out-diffused boron and Mg vapor up to 10 min, resulting in a rough surface morphology of MgB2 layer. By considering the mass balance of Mg and boron during ex situ annealing, we obtained the diffusivities of Mg and boron in MgB2 layer which were in the same order range of approximately 10−12 cm2/s.


2001 ◽  
Vol 693 ◽  
Author(s):  
M. A. Reshchikov ◽  
D. Huang ◽  
F. Yun ◽  
P. Visconti ◽  
T. King ◽  
...  

AbstractWe compared photoluminescence (PL) and cross-sectional transmission electron microscopy (TEM) characteristics of GaN samples with Ga and N polarities grown by molecular beam epitaxy (MBE) on sapphire substrates. Ga-polar films grown at low temperature typically have very smooth surfaces, which are extremely difficult to etch with acids or bases. In contrast, the N-polar films have rougher surfaces and can be easily etched in hot H3PO4 or KOH. The quality of the X-ray diffraction spectra is also much better in case of Ga-polar films. Surprisingly, PL efficiency is always much higher in the N-polar GaN, yet the features and shape of the PL spectra are comparable for both polarities. We concluded that, despite the excellent quality of the surface, MBE-grown Ga-polar GaN layers contain higher concentration of nonradiative defects. From the analyses of cross-sectional TEM investigations, we have found that Ga-polar films have high density of threading dislocations (5x109 cm-2) and low density of inversion domains (1x107 cm-2). For N-polar GaN the situation is the reverse: the density of dislocations and inversion domains are 5x108 and ~1x1011 cm-2, respectively. One of the important conclusions derived from the combined PL and TEM study is that inversion domains do not seem to affect the radiative efficiency very adversly, whereas dislocations reduce it significantly.


2007 ◽  
Vol 280-283 ◽  
pp. 823-826 ◽  
Author(s):  
Tong Lai Chen ◽  
Xiao Min Li

Atomic-scale smooth Pt electrode films have been deposited on MgO/TiN buffered Si (100) by the pulsed laser deposition (PLD) technique. The whole growth process of the multilayer films was monitored by using in-situ reflection high energy electron diffraction (RHEED) apparatus. The Pt/MgO/TiN/Si(100) stacked structure was also characterized by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The HREED observations show that the growth mode of the Pt electrode film is 2D layer-by-layer growth. It is found that the (111)-oriented Pt electrode film has a crystallinity comparable to that of monocrystals. The achievement of the quasi-single-crystal Pt electrode film with an atomic-scale smooth surface is ascribed to the improved crystalline quality of the MgO film.


1991 ◽  
Vol 237 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen ◽  
S. Lee

ABSTRACTThe formation of suicides during the thermal reaction of Ti/polysilicon bilayers has been investigated using both in-stu four point sheet resistance measurements and ex-situ measurements including X-ray diffraction, cross-sectional transmission electron microscopy and Auger electron spectroscopy. For a series of samples annealed at a ramp rate of 10°C/min the following sequence of changes in the bilayers occurred. At temperatures exceeding 350°C and prior to the silicidation oxygen from the vacuum system diffuses into the Ti film forming a solid solution of Ti(O) with O levels up to 20 %. An amorphous TixSiy layer is the first major suicide reaction observed at temperatures near 440°C. The first major crystalline phase is observed at 500°C and identified as C49 TiSi2. This phase was found to coexist at these temperatures with the partially consumed Ti(O) and the amorphous TixSiy layers. Further annealing above 700 °C results in the final structural transformation from C49 TiSi2 to C54 TiSi2.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Wei-Chun Chen ◽  
Yue-Han Wu ◽  
Jr.-Sheng Tian ◽  
Tzu-Chun Yen ◽  
Pei-Yin Lin ◽  
...  

In-rich InAlN films were grown directly on Si (111) substrate by RF-MOMBE without any buffer layer. InAlN films were grown at various substrate temperatures in the range of 460–540°C with TMIn/TMAl ~3.3. Structural properties of InAlN ternary alloys were investigated with X-ray diffraction, scanning electron microscopy, and transmission electron microscopy (TEM). It is shown that the deposited In0.8AlM0.2N (0001) films can be in epitaxy with Si (111) substrate with orientation relationship of [2̅110]InAlN//[11̅0]Si. Also, the growth rate around ~0.25 μm/h almost remains constant for growth in the temperature range from 460 to 520°C. Cross-sectional TEM from InAlN grown on Si (111) at 460°C shows that the epitaxial film is in direct contact with Si without any interlayer.


1996 ◽  
Vol 440 ◽  
Author(s):  
Bi-Ke Yang ◽  
J. D. Weil ◽  
M. Krishnamurthy

AbstractWe report on the differences in the epitaxial growth mechanisms between Ge1−xCx (O<x<0.1) and Ge1−x−ySixCy (x=0.2, 0<y<0.05) alloys grown on Si(100) using low temperature( 200°C) molecular beam epitaxy. Thin films (50˜65nm) were characterized in situ by RHEED and ex situ by transmission electron microscopy and x-ray diffraction. With increasing C concentration, the microstructure of both Ge and GeSi alloys changes from 2D layer growth to 3D islanding. The d400 spacing of the relaxed alloys decreases marginally, with a maximum of 1at.% C being substitutionally incorporated. Ge-C films with higher C content have a high density of planar defects, typically twins and stacking faults. The addition of 20% Si does not appear to increase the amount of substitutional C in the films. Rather, the additions of 20% Si to Ge-C alloys somehow seems to enhance the tendency for the formation of planar defects.


Sign in / Sign up

Export Citation Format

Share Document