Recent Progress in the Development of a Lightweight Nickel Electrode

1995 ◽  
Vol 393 ◽  
Author(s):  
Doris L. Britton

ABSTRACTThe nickel-hydrogen (Ni-H2) cell is rapidly replacing nickel-cadmium (Ni-Cd) cell as the system of choice for aerospace applications where weight is crucial. The heavy-sintered nickel electrode used in this cell accounts for about 38% of the cell weight. The use of small diameter fiber nickel electrodes will reduce the weight and improve the specific energy of the state-of-the-art Ni-H2 cell by about 50%. One advantage of this small diameter nickel fiber material is the increase in the surface area available for the deposition of active material. Initial testing of this type of electrode is very promising. This electrode is also applicable to other nickel-based batteries, such as nickel-zinc, nickel-iron, and nickel-metalhydride, both for space and commercial applications.

Author(s):  
Alexandru-Lucian Georgescu ◽  
Alessandro Pappalardo ◽  
Horia Cucu ◽  
Michaela Blott

AbstractThe last decade brought significant advances in automatic speech recognition (ASR) thanks to the evolution of deep learning methods. ASR systems evolved from pipeline-based systems, that modeled hand-crafted speech features with probabilistic frameworks and generated phone posteriors, to end-to-end (E2E) systems, that translate the raw waveform directly into words using one deep neural network (DNN). The transcription accuracy greatly increased, leading to ASR technology being integrated into many commercial applications. However, few of the existing ASR technologies are suitable for integration in embedded applications, due to their hard constrains related to computing power and memory usage. This overview paper serves as a guided tour through the recent literature on speech recognition and compares the most popular ASR implementations. The comparison emphasizes the trade-off between ASR performance and hardware requirements, to further serve decision makers in choosing the system which fits best their embedded application. To the best of our knowledge, this is the first study to provide this kind of trade-off analysis for state-of-the-art ASR systems.


2021 ◽  
Vol 7 (1) ◽  
pp. 51
Author(s):  
Allen Grace Niego ◽  
Olivier Raspé ◽  
Naritsada Thongklang ◽  
Rawiwan Charoensup ◽  
Saisamorn Lumyong ◽  
...  

The oudemansielloid/xeruloid taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula are genera of Basidiomycota that constitute an important resource of bioactive compounds. Numerous studies have shown antimicrobial, anti-oxidative, anti-cancer, anti-inflammatory and other bioactivities of their extracts. The bioactive principles can be divided into two major groups: (a) hydrophilic polysaccharides with relatively high molecular weights and (b) low molecular medium polar secondary metabolites, such as the antifungal strobilurins. In this review, we summarize the state of the art on biodiversity, cultivation of the fungi and bioactivities of their secondary metabolites and discuss future applications. Although the strobilurins are well-documented, with commercial applications as agrochemical fungicides, there are also other known compounds from this group that have not yet been well-studied. Polysaccharides, dihydro-citrinone phenol A acid, scalusamides, and acetylenic lactones such as xerulin, also have potential applications in the nutraceutical, pharmaceutical and medicinal market and should be further explored. Further studies are recommended to isolate high quality bioactive compounds and fully understand their modes of action. Given that only few species of oudemansielloid/xeruloid mushrooms have been explored for their production of secondary metabolites, these taxa represent unexplored sources of potentially useful and novel bioactive metabolites.


2017 ◽  
Vol 214 (9) ◽  
pp. 1600706 ◽  
Author(s):  
Carina Daniela Grill ◽  
Jan Philipp Kollender ◽  
Achim Walter Hassel

2020 ◽  
Vol 10 (19) ◽  
pp. 6865 ◽  
Author(s):  
Mandeep Kaur ◽  
Pierre M. Lane ◽  
Carlo Menon

The growth and development of optical components and, in particular, the miniaturization of micro-electro-mechanical systems (MEMSs), has motivated and enabled researchers to design smaller and smaller endoscopes. The overarching goal of this work has been to image smaller previously inaccessible luminal organs in real time, at high resolution, in a minimally invasive manner that does not compromise the comfort of the subject, nor introduce additional risk. Thus, an initial diagnosis can be made, or a small precancerous lesion may be detected, in a small-diameter luminal organ that would not have otherwise been possible. Continuous advancement in the field has enabled a wide range of optical scanners. Different scanning techniques, working principles, and the applications of endoscopic scanners are summarized in this review.


1993 ◽  
Vol 327 ◽  
Author(s):  
Theodore M. Besmann ◽  
David P. Stinton ◽  
Richard A. Lowden

AbstractContinuous fiber ceramic composites are enabling new, high temperature structural applications. Chemical vapor infiltration methods for producing these composites are being investigated, with the complexity of filament weaves and deposition chemistry merged with standard heat and mass transport relationships. Silicon carbide-based materials are, by far, the most mature, and are already being used in aerospace applications. This paper addresses the state-of-the art of the technology and outlines current issues.


1995 ◽  
Vol 04 (03) ◽  
pp. 413-432 ◽  
Author(s):  
NICHOLAS MARCHALLECK ◽  
ABRAHAM KANDEL

The purpose of this paper is to provide a survey of state of the art fuzzy logic applications in the field of transportation, illustrating the usefulness, and the promising future of the fuzzy approach. The majority of the discussion covers the area of fuzzy control. A wide range of Fuzzy Logic Controllers (FLCs) is discussed, ranging from traffic, to aircraft controllers. Although the majority of applications are to surface transportation, surveys of several aerospace applications are also given.


2011 ◽  
Vol 1353 ◽  
Author(s):  
Ashok Vaseashta

ABSTRACTParadigmatically, the convergence of science has exceptionally high potential for transforming the manner in which state-of-the-art information is gathered, analyzed, and leveraged to enable future advances and applications. Highlighting the potential and challenges of hierarchically integrating nanotechnologies is essential for realizing commercial applications. The heterogeneity of structures and compositions of nanomaterials present limitless possibilities; yet these envisioned benefits may be accompanied by certain technological limitations of integrating nanomaterials in commercial products. A balanced overview is presented of the realistic capabilities and potential, as well as the limitations, challenges of system engineering nanomaterials in platform integration. Examples of integrating nanomaterials in useable platforms are also presented. Most notably, the review suggests that nanomaterial based systems and devices that do not require a nano to micro/macro interface integration have reached commercialization whereas those needing a nano-to-micro/macro interface require further investigations. These selected studies provide an insight in obstacles and challenges presented by hierarchical integration of nanomaterials in commercial systems/devices and are crucial for commercialization as the research transitions from laboratory to marketplace, having the potential to transform into a multi-billion dollar niche market.


Sign in / Sign up

Export Citation Format

Share Document