Spectral Sensitivities of X-Ray Diffraction to the Roughness of Si/SiO2 Interfaces

1995 ◽  
Vol 399 ◽  
Author(s):  
K.W. Evans-Lutterodt ◽  
Mau-Tsu Tang

ABSTRACTResults from X-ray diffraction studies of the morphology of the growing Si(001 )/SiO2 interface are presented. We show the evolution of the root mean square roughness as a function of the growth variables, and we try to go beyond the root mean square parametrization of the interface by measuring the spectral distribution of interface fluctuations. Within our current experimental sensitivies we cannot resolve any fluctuations with a finite in-plane momentum transfer.

1962 ◽  
Vol 6 ◽  
pp. 96-120 ◽  
Author(s):  
D. O. Welch ◽  
H. M. Otte

AbstractPlastic deformation of metals produces a state characterized by the presence of residual elastic strains, small domains which diffract X-rays coherently, and often stacking faults; these effects may be studied with X-ray diffraction techniques. Changes in the lattice parameter, shifts in the relative positions of diffraction lines, and the broadening of diffraction lines were used to study the state of coldwork resulting in Cu-6.6 at.%Si-1.2 at.%Mn after deformation by filing, wiredrawing, and uniaxial tension at room temperature.Both filing and wire-drawing produce large root-mean-square strains and stacking faults, whereas deformation by tension up to 22% extension fails to produce any clear evidence of faulting or root-mean-square strains. Tensile deformation causes fragmentation of coherent domains to an average dimension of 250 Å after 22% extension, and results in a radial, tensile, residual macrostrain arising from a smaller rate of work hardening in the surface layers than in the interior. Wire drawing also results in a residual macrostrain system. Deformation appears to enhance diffusion and promote solute clustering at room temperature.


2013 ◽  
Vol 740-742 ◽  
pp. 510-513 ◽  
Author(s):  
Pho Van Bui ◽  
Shun Sadakuni ◽  
Takeshi Okamoto ◽  
Kenta Arima ◽  
Yasuhisa Sano ◽  
...  

Our group has developed a novel abrasive-free planarization technique known as catalyst-referred etching (CARE). It can produce flat, undamaged, and smooth SiC surfaces with a root-mean-square roughness of less than 0.1 nm over a whole wafer. This study investigates the etching mechanism of CARE by performing X-ray photoelectron spectroscopy (XPS) measurements to determine the termination species of CARE-processed SiC surfaces. We compared XPS spectra of a CARE-processed surface with those of an as-received SiC surface that had been treated with 50% HF solution. XPS spectra of the CARE-processed wafer contain the F 1s core level, whereas those of an as-received SiC wafer surface did not. This indicates that F anions play an important role in the etching process of CARE.


1982 ◽  
Vol 25 (4) ◽  
pp. 2315-2323 ◽  
Author(s):  
G. Rasigni ◽  
F. Varnier ◽  
M. Rasigni ◽  
J. P. Palmari ◽  
A. Llebaria

2008 ◽  
Vol 33 (2) ◽  
pp. 173-189 ◽  
Author(s):  
W. James Stemp ◽  
Ben E. Childs ◽  
Samuel Vionnet ◽  
Christopher A. Brown

2019 ◽  
Vol 862 ◽  
pp. 781-815 ◽  
Author(s):  
Y. Kuwata ◽  
Y. Kawaguchi

Lattice Boltzmann direct numerical simulation of turbulent open-channel flows over randomly distributed hemispheres at $Re_{\unicode[STIX]{x1D70F}}=600$ is carried out to reveal the influence of roughness parameters related to a probability density function of rough-surface elevation on turbulence by analysing the spatial and Reynolds- (double-) averaged Navier–Stokes equation. This study specifically concentrates on the influence of the root-mean-square roughness and the skewness, and profiles of turbulence statistics are compared by introducing an effective wall-normal distance defined as a wall-normal integrated plane porosity. The effective distance can completely collapse the total shear stress outside the roughness sublayer, and thus the similarity of the streamwise mean velocity is clearer by introducing the effective distance. In order to examine the influence of the root-mean-square roughness and the skewness on dynamical effects that contribute to an increase in the skin friction coefficient, the triple-integrated double-averaged Navier–Stokes equation is analysed. The main contributors to the skin friction coefficient are found to be turbulence and drag force. The turbulence contribution increases with the root-mean-square roughness and/or the skewness. The drag force contribution, on the other hand, increases in particular with the root-mean-square roughness whereas an increase in the skewness does not increase the drag force contribution because it does not necessarily increase the surface area of the roughness elements. The contribution of the mean velocity dispersion induced by spatial inhomogeneity of the rough surfaces substantially increases with the root-mean-square roughness. A linear correlation is confirmed between the root-mean-square roughness and the equivalent roughness while the equivalent roughness monotonically increases with the skewness. A new correlation function based on the root-mean-square roughness and the skewness is developed with the available experimental and direct numerical simulation data, and it is confirmed that the developed correlation reasonably predicts the equivalent roughness of various types of real rough surfaces.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 107 ◽  
Author(s):  
Weisheng Yang ◽  
Liang Jiao ◽  
Wei Liu ◽  
Hongqi Dai

Traditionally, inorganic nanoparticles (SiO2, TiO2) have been utilized to tune the optical haze of optoelectronic devices. However, restricted to complex and costly processes for incorporating these nanoparticles, a simple and low-cost approach becomes particularly important. In this work, a simple, effective, and low-cost method was proposed to improve optical haze of transparent cellulose nanofibril films by directly depositing micro-sized 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized wood fibers (“coating” method). The obtained films had a high total transmittance of 85% and a high haze of 62%. The film samples also showed a high tensile strength of 80 MPa and excellent thermal stability. Dual sides of the obtained films had different microstructures: one side was extremely smooth (root-mean-square roughness of 6.25 nm), and the other was extremely rough (root-mean-square roughness of 918 nm). As a reference, micro-sized TEMPO-oxidized wood fibers and cellulose nanofibrils were mixed to form a transparent and hazy film (“blending” method). These results show that hazy transparent films prepared using the “coating” method exhibit superior application performances than films prepared using the “blending” method.


2013 ◽  
Vol 47 (1) ◽  
pp. 166-172 ◽  
Author(s):  
Bridget Ingham

Spotty diffraction rings arise when the size distribution of crystallites illuminated by the incident beam includes crystallites that are large compared with the size of the beam. In this article, several statistical measures are used in conjunction to quantify spottiness and relate it to a crystallite size distribution: the number of peaks, the normalized root mean square intensity variation and the fractal dimension. These are demonstrated by way of example using synchrotron X-ray diffraction patterns collected duringin situcorrosion of mild steel in carbon dioxide-saturated aqueous brine.


2010 ◽  
Vol 663-665 ◽  
pp. 1159-1162
Author(s):  
Ning Yu Zhang ◽  
Qing Song Huo ◽  
Li Xin Han ◽  
Gang Fu ◽  
Jun Qing Zhao ◽  
...  

A method for characterizing the morphology property of ZnO film surface with Gaussian correlation is investigated. The parameters of root-mean-square roughness w and lateral correlation lengthξare introduced in Gaussian model to describe the correlation properties of the random film surfaces. In the experimental performance, ZnO thin films are grown on quartz glass and silicon substrates by the reactive radio-frequency magnetron sputtering method under different deposition pressure. The surface morphologies of the film surface are scanned by an atomic force microscopy. The height auto-correlation functions and root-mean-square roughness are obtained by using the numerical calculus method. Carried on the fitting with the Gaussian function to the height auto-correlation function data, the lateral correlation lengths are extracted to describe the statistical properties of ZnO thin film in mathematics with other parameters.


Sign in / Sign up

Export Citation Format

Share Document