Electromigration in Submicron Wide Copper Lines

1996 ◽  
Vol 427 ◽  
Author(s):  
O. V. Kononenko ◽  
V. N. Matveev ◽  
Yu. I. Koval ◽  
S. V. Dubonos ◽  
V. T. Volkov

AbstractCopper films were deposited onto oxidized silicon wafers by the self-ion assisted technique. A 0 and 6 kV bias was applied to the substrate during the deposition. The films were patterned into parallel line arrays of 20 lines 0.5 mm long, using electron lithography and dry etching. After patterning, the lines were covered by silicon oxide and annealed in vacuum for 1 hour at the temperature 450° C. Electromigration testing was performed in air in the temperature range from 280° to 350° C and at a current density 3.106 A/cm2.It was found that the resistivities of the films deposited at 6 kV and without bias were 1.7 and 2.0 μΩcm, respectively. The median times to failure are 398.6 and 240 h and the deviations in the time to failure are 0.8 and 0.54 for 6 kV lines and 0 kV lines, respectively. An electromigration activation energy of 0.89 eV was found for 0 kV films.

1996 ◽  
Vol 428 ◽  
Author(s):  
O. V. Kononenko ◽  
V. N. Matveev ◽  
Yu. I. Koval ◽  
S. V. Dubonos ◽  
V. T. Volkov

AbstractCopper films were deposited onto oxidized silicon wafers by the self-ion assisted technique. A 0 and 6 kV bias was applied to the substrate during the deposition. The films were patterned into parallel line arrays of 20 lines 0.5 mm long, using electron lithography and dry etching. After patterning, the lines were covered by silicon oxide and annealed in vacuum for 1 hour at the temperature 450° C. Electromigration testing was performed in air in the temperature range from 280° to 350° C and at a current density 3.106 A/cm2.It was found that the resistivities of the films deposited at 6 kV and without bias were 1.7 and 2.0 μΩ-cm, respectively. The median times to failure are 398.6 and 240 h and the deviations in the time to failure are 0.8 and 0.54 for 6 kV lines and 0 kV lines, respectively. An electromigration activation energy of 0.89 eV was found for 0 kV films.


Nanoscale ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 5581-5590 ◽  
Author(s):  
Lin Zhu ◽  
Ziliang Chen ◽  
Yun Song ◽  
Pei Wang ◽  
Yingchang Jiang ◽  
...  

Mn0.33Co0.67N nanosheets were reported as a novel anode material for LIBs with a high reversible capacity close to 900 mA h g−1 after 150 cycles at a current density of 500 mA g−1, which is superior to 749 mA h g−1 of undoped CoN due to the enhancement of regeneration of Co–N bonds.


2005 ◽  
Vol 863 ◽  
Author(s):  
Steve Kilgore ◽  
Craig Gaw ◽  
Haldane Henry ◽  
Darrell Hill ◽  
Dieter Schroder

AbstractElectromigration tests were performed on passivated electroplated Au four terminal Kelvin line structures using the conventional in situ resistance monitoring technique. The stress conditions were a current density of 2.0 MA/cm2 with ambient temperatures ranging from 325°C to 375°C. The temperature coefficients of resistance (TCR) values were measured prior to current stressing to calculate the Joule heated film temperatures. The times to failure (lifetimes) for the Au line structures were considered as a 50% ΔR/R0 change. The median time to failure (t50%) was plotted against the inverse film temperature to determine the activation energy value as 0.59 ± 0.09 eV. Failure analysis of void location and suggested diffusion mechanism will be discussed.


1998 ◽  
Vol 514 ◽  
Author(s):  
L. Vedula ◽  
V. Pillai ◽  
V. S. Nimmagadda ◽  
R. Singh ◽  
K. F. Poole ◽  
...  

ABSTRACTThin Al films alloyed with three different compositions (0.1%, 1%, 5% by weight) of Yttrium were deposited by D.C. Magnetron Sputtering onto oxidized Si wafer substrates. The samples were furnace annealed at 425 °C for 30 minutes. Resistivity measured for the as-deposited and annealed Al(0. lwt% Y) were 3.07 and 2.57+/−0.25 μΩcm respectively. Al(0. lwt% Y) was also annealed by furnace annealing (FA), rapid thermal annealing (RTA) and rapid photothermal annealing (RPA). RPA gave a residual resistivity of 2.67μΩcm in 5 minutes and at a temperature of 350 C for Al(0. lwt% Y). Mean time to failure for AI(0. lwt% Y) samples at a current density of 3.2+/−0.5×106A/cm2 at 30 C was 50 hours. TEM results showed grain size variation from 0.5 to 2 μm.


2000 ◽  
Vol 612 ◽  
Author(s):  
A.E. Zitzelsberger ◽  
A.H. Fischer

AbstractThe influence of stress-induced voiding on the electromigration (EM) behavior has been investigated on narrow via-line structures. For this purpose the EM performance of metal lines containing stress-induced voids already before the electrical operation has been compared with samples without stress-induced voids. We found, that pre-existing stress voids in the metal lines do not affect the activation energy Ea and lead only to a small decrease of the EM median time to failure, but cause a relevant reduction of the current density exponent down to n = 1. As a consequence, a tremendous decrease of the electromigration limited life time is obtained.


1998 ◽  
Vol 516 ◽  
Author(s):  
S. H. Kang ◽  
J. W. Morris ◽  
C.-U. Kim

AbstractIn previous work we proposed a simple constitutive equation that describes the electromigration failure kinetics in naturally passivated Al(Cu) quasi-bamboo lines. The time to failure, tf obeys the relation, tf = t0 exp (−l/t0), where t0 and l0 are characteristic constants and l is the length of the polygranular segment that causes failure (which is ordinarily the longest polygranular segment in the line). The present paper gathers the data supporting this relation, which includes tests on lines as-patterned and annealed at low and high temperature, and examines the dependence of the factors t0 and l0 on current density, test temperature, line geometry, and Al2Cu precipitate distribution. The experimental data suggest that to varies geometrically with j, with exponent n ≈ 2.8, and exponentially with T−1, with activation energy of ∼0.69 eV. It also varies with the line width and the distribution of Al2Cu precipitates. On the other hand, l0 is only weakly dependent on current density and temperature, but may vary with the ratio of line width to grain size (w/G).


Author(s):  
А.Е. Калядин ◽  
К.Ф. Штельмах ◽  
П.Н. Аруев ◽  
В.В. Забродский ◽  
К.В. Карабешкин ◽  
...  

Silicon light-emitting diodes with luminescence associated with (113) defects have been fabricated using implantation of 350 keV oxygen ions at the dose of 3.7∙1014 cm-2 and subsequent annealing at 700ᵒC for 1 h in a chlorine-containing atmosphere. Electroluminescence was studied in wide ranges of temperature and an excitation power. The line associated with (113) defects dominates in all the spectra. The temperature dependence of the line intensity depends on the excitation power in the range of low temperatures: an increase of the intensity with activation energy of 25 meV is observed at low current density and, with the increasing current density, a rise of the intensity is not observed. At higher temperatures, a decrease of the intensity with activation energy of 59 meV occurs regardless of a current density. With the increasing temperature, the peak of the line shifts by the same energy as the forbidden gap width, while the half width of the line grows linearly.


Author(s):  
A. Ohta ◽  
K. Yajima ◽  
N. Higashisaka ◽  
T. Heima ◽  
T. Hisaka ◽  
...  

Abstract This paper describes voids in a gold line, which is a new failure mechanisms of GaAs IC using gold line as interconnection. We have found voids in both first and second metal under DC bias test, current density of 0.67 to 1.27 106 A/cm2 in high temperature range of 230 °C to 260 °C. We have observed carefully the movement of voids during the test and found that voids moved toward a cathode, in the opposite direction of electron flow. The velocity of voids increased with the current density almost proportionally. The moving mechanisms of a void can be explained by assuming that gold atoms move toward an anode by electromigration. The activation energy of the void velocity was 0.84 eV at the cathode side. This was nearly equal to 0.6 eV - 0.9 eV reported on the velocity of the gold island on molybdenum surfaces [1]. The GaAs IC failed at the almost same time as the voids appeared. The activation energy of mean time to failure of the IC was 0.89 eV, which was nearly equal to that of the void velocity at the cathode edge of 0.84 eV.


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


2021 ◽  
Author(s):  
Minmin Wang ◽  
Mengke Zhang ◽  
Wenwu Song ◽  
Weiting Zhong ◽  
Xunyue Wang ◽  
...  

A CoMo2S4/Ni3S2 heterojunction is prepared with an overpotential of only 51 mV to drive a current density of 10 mA cm−2 in 1 M KOH solution and ∼100% of the potential remains in the ∼50 h chronopotentiometric curve at 10 mA cm−2.


Sign in / Sign up

Export Citation Format

Share Document