On the Epitaxy of Metal Films on GaN

1996 ◽  
Vol 449 ◽  
Author(s):  
Q.Z. Liu ◽  
K.V. Smith ◽  
E.T. Yu ◽  
S.S. Lau ◽  
N.R. Perkins ◽  
...  

ABSTRACTA variety of metal films deposited at room temperature have been found to grow epitaxially under conventional vacuum conditions on GaN grown by metalorganic vapor phase epitaxy on sapphire substrates. The metal films have been characterized by X-ray diffraction using a thin-film Read camera and by MeV ion channeling measurements. Lattice mismatch between the epitaxial metals and the GaN basal planes ranges from ∼ 0.2% to ∼ 22%, and does not appear to be the determining factor in the epitaxy reported here. Surface structure of the epitaxial metal films has been studied by atomic force microscopy and found to differ considerably from that of nonepitaxial metal films grown on similar GaN substrates.

1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


2001 ◽  
Vol 696 ◽  
Author(s):  
Ravi Bathe ◽  
R.D. Vispute ◽  
Daniel Habersat ◽  
R. P. Sharma ◽  
T. Venkatesan ◽  
...  

AbstractWe have investigated the epitaxy, surfaces, interfaces, and defects in AlN thin films grown on SiC by pulsed laser deposition. The stress origin, evolution, and relaxation in these films is reported. The crystalline structure and surface morphology of the epitaxially grown AlN thin films on SiC (0001) substrates have been studied using x-ray diffraction (θ–2θ, ω, and Ψ scans) and atomic force microscopy, respectively. The defect analysis has been carried out by using Rutherford backscattering spectrometry and ion channeling technique. The films were grown at various substrate temperatures ranging from room temperature to 1100 °C. X-ray diffraction measurements show highly oriented AlN films when grown at temperatures of 750- 800 °C, and single crystals above 800 °C. The films grown in the temperature range of 950 °C to 1000 °C have been found to be highly strained, whereas the films grown above 1000 °C were found to be cracked along the crystallographic axes. The results of stress as a function of growth temperature, thermal mismatch, growth mode, and buffer layer thickness will be presented, and the implications of these results for wide band gap power electronics will be discussed.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


2007 ◽  
Vol 06 (05) ◽  
pp. 407-410 ◽  
Author(s):  
I. P. KAZAKOV ◽  
V. I. KOZLOVSKY ◽  
V. P. MARTOVITSKY ◽  
YA. K. SKASYRSKY ◽  
M. D. TIBERI ◽  
...  

ZnSSe / ZnMgSSe MQW structures were grown by molecular beam epitaxy on GaAs substrates. The band gap of ZnMgSSe barriers was approximately 3 eV at room temperature. Cathodoluminescence, X-ray diffraction, optical, scanning electron beam, and atomic force microscopy were all used for structure characterization. Decay of the ZnMgSSe solid solution in at least two phases was observed. Improvement in the quality of the crystal lattice and surface morphology was achieved by mismatching the ZnMgSSe from the GaAs substrate by increasing the lattice period by 0.24%.


2010 ◽  
Vol 148-149 ◽  
pp. 1144-1147
Author(s):  
Xiang Rong Zhu ◽  
Lin Feng Lu ◽  
Hong Lie Shen

NixZn1-xFe2O4 (x=0.4, 0.6) powders are synthesized by sol-gel technique. The X-ray diffraction (XRD) measurements show their polycrystalline spinel structural characteristics. Both XRD and Atomic Force Microscopy demonstrate the samples are nanosized. At room temperature typical soft magnetism is exhibited by the samples. The reflection attenuation resulting from microwave absorption would reach to 1.9 dBm over the frequency range 6 GHz - 10 GHz when the samples are paved on a 10 cm  10 cm square aluminum plate with a thickness of about 0.35 mm.


1994 ◽  
Vol 359 ◽  
Author(s):  
S. Henke ◽  
K.H. Thürer ◽  
S. Geier ◽  
B. Rauschenbach ◽  
B. Stritzker

ABSTRACTOn mica(001) thin C60-films are deposited by thermal evaporation at substrate temperatures from room temperature up to 225°C. The dependence of the structure and the epitaxial alignment of the thin C60-films on mica(001) on the substrate temperature and the film thickness up to 1.3 μm at a well-defined deposition rate (0.008 nm/s) is investigated by atomic force microscopy and X-ray diffraction. The shape and the size of the C60-islands, which have an influence on the film quality at larger film thicknesses, are sensitively dependent on the substrate temperature. At a film thickness of 200 nm the increase of the substrate temperature up to 225°C leads to smooth, completely coalesced epitaxial C60-thin films characterized by a roughness smaller than 1.5 nm, a mosaic spread Δω of 0.1° and an azimuthal alignment ΔΦ of 0.45°.


NANO ◽  
2010 ◽  
Vol 05 (02) ◽  
pp. 127-132 ◽  
Author(s):  
DIDIK ARYANTO ◽  
ZULKAFLI OTHAMAN ◽  
AMIRA S. AMERUDDIN ◽  
ABD. KHAMIM ISMAIL

In0.5Ga0.5As quantum dots (QDs) stacked structure were studied using atomic force microscopy (AFM), high-resolution X-ray diffraction (HR-XRD) and photoluminescence (PL) characterization. Evolution in the dots size and dots density in the stacked structures is strongly influenced by the dot formation in the under-layer and the structure of the spacer layers. AFM results revealed that the dots formation on the top can be changed by increasing the number of stacked QDs. However, the dots formation is not vertically aligned since HR-XRD measurement gave different satellite peak on n-stacked QD structures. Room-temperature PL measurements show variation in the PL spectra, where blue-shifted PL peak positions are observed when the number of stack is increased. Variation in the HR-XRD and PL measurement is also attributed to the size, composition and density of the dots in the stacked structures.


1999 ◽  
Vol 595 ◽  
Author(s):  
Olivier Parillaud ◽  
Volker Wagner ◽  
Hans-Jörg Bühlmann ◽  
François Lelarge ◽  
Marc Ilegems

AbstractWe present preliminary results on gallium nitride growth by HVPE on C-plane sapphire with 2, 4 and 6 degrees misorientation towards M and A directions. A nucleation GaN buffer layer is deposited prior the growth by MOVPE. Surface morphology and growth rates are compared with those obtained on exact C-plane oriented sapphire, for various growth conditions. As expected, the steps already present on the substrate surface help to initiate a directed step-flow growth mode. The large hillocks, which are typical for HVPE GaN layers on (0001) sapphire planes, are replaced by more or less parallel macro-steps. The width and height of these steps, due to step bunching effect, depend directly on the angle of misorientation and on the growth conditions, and are clearly visible by optical or scanning electron microscopy. Atomic force microscopy and X-ray diffraction measurements have been carried out to quantify the surface roughness and crystal quality.


2012 ◽  
Vol 620 ◽  
pp. 368-372 ◽  
Author(s):  
Saleh H. Abud ◽  
Hassan Zainuriah ◽  
Fong Kwong Yam ◽  
Alaa J. Ghazai

In this paper, InGaN/GaN/AlN/Si (111) structure was grown using a plasma-assisted molecular beam epitaxy (PA-MBE) technique. The structural and optical properties of grown film have been characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), high resolution X-ray diffraction (HR-XRD) and photoluminescence (PL). Indium-mole fraction has been computed to be 0.27 using XRD data and Vegards law with high grain size and low tensile strain. Room-temperature photoluminescence revealed an intense peak at 534 nm (2.3 eV) related to our sample In0.27Ga0.73N.


Sign in / Sign up

Export Citation Format

Share Document