Enhancement in Figure-Of-Merit with Superlattice Structures for Thin-Film Thermoelectric Devices

1997 ◽  
Vol 478 ◽  
Author(s):  
R. Venkatasubramanian ◽  
T. Colpitts

AbstractThin-film superlattice (SL) structures in thermoelectric materials are shown to be a promising approach to obtaining an enhanced figure-of-merit, ZT, compared to conventional, state-of-the-art bulk alloyed materials. In this paper we describe experimental results on Bi2Te3/Sb2Te3 and Si/Ge SL structures, relevant to thermoelectric cooling and power conversion, respectively. The short-period Bi2Te3/Sb2Te3 and Si/Ge SL structures appear to indicate reduced thermal conductivities compared to alloys of these materials. From the observed behavior of thermal conductivity values in the Bi2Te3/Sb2Te3 SL structures, a distinction is made where certain types of periodic structures may correspond to an ordered alloy rather than an SL, and therefore, do not offer a significant reduction in thermal conductivity values. Our study also indicates that SL structures, with little or weak quantum-confinement, also offer an improvement in thermoelectric power factor over conventional alloys. We present power factor and electrical transport data in the plane of the SL interfaces to provide preliminary support for our arguments on reduced alloy scattering and impurity scattering in Bi2Te3/Sb2Te3 and Si/Ge SL structures. These results, though tentative due to the possible role of the substrate and the developmental nature of the 3-ω method used to determine thermal conductivity values, suggest that the short-period SL structures potentially offer factorial improvements in the three-dimensional figure-of-merit (ZT3D) compared to current state-of-the-art bulk alloys. An approach to a thin-film thermoelectric device called a Bipolarity-Assembled, Series-Inter-Connected Thin- Film Thermoelectric Device (BASIC-TFTD) is introduced to take advantage of these thin-film SL structures.

2021 ◽  
Author(s):  
Chun Hung Suen ◽  
Songhua Cai ◽  
Hui Li ◽  
Xiaodan Tang ◽  
Huichao Wang ◽  
...  

Abstract Achieving high thermoelectric power factor in thin film heterostructures is essential for integrated and miniaturized thermoelectric device applications. In this work, we demonstrate a mechanism to enhance thermoelectric power factor through coupling the interfacial confined two-dimensional electron gas (2DEG) with thin film conductivity in a transition metal dichalcogenides-SrTiO3 heterostructure. Owing to the formed conductive interface with two-dimensional electron confinement effect and the elevated conductivity, the ZrTe2/SrTiO3 (STO) heterostructure presents enormous thermoelectric power factor as high as 4×10^5 μW cm^(-1) K^(-2) at 20 K and 4800 μW cm^(-1) K^(-2) at room temperature. Interfacial reaction induced degradation of Ti cations valence number from Ti4+ to Ti3+ is attributed to be responsible for the formation of the quasi-two-dimensional electrons at the interface which results in very large Seebeck coefficient; and the enhanced electrical conductivity is suggested to be originated from the charge transfer induced doping in the ZrTe2. By taking the thermal conductivity of STO substrate as a reference, the effective zT value of this heterostructure can reach 15 at 300 K. This superior thermoelectric property makes this heterostructure a promising candidate for future thermoelectric device, and more importantly, paves a new pathway to design promising high-performance thermoelectric systems.


Author(s):  
Iyyappa Rajan Panneerselvam ◽  
Man Hea Kim ◽  
Carlos Baldo III ◽  
Yan Wang ◽  
Mahalakshmi Sahasranaman

The tug-of-war between the thermoelectric power factor and the figure-of-merit complicates thermoelectric material selection, particularly for mid-to-high temperature thermoelectric materials. Approaches to reduce lattice thermal conductivity while maintaining a high-power...


2014 ◽  
Vol 787 ◽  
pp. 210-214 ◽  
Author(s):  
Yi Li ◽  
Jian Liu ◽  
Chun Lei Wang ◽  
Wen Bin Su ◽  
Yuan Hu Zhu ◽  
...  

The thermoelectric properties of Sr0.61Ba0.39Nb2O6 ceramics, reduced in various conditions, were investigated in the temperature range from 323K to 1073K. Both the electrical resistivity and the absolute Seebeck coefficient decreased with the deepening degree of oxygen-reduction. However, the decrease of the electrical resistivity had a major influence on the thermoelectric power factor. Therefore, the more heavily reduced sample can gain the higher value of thermoelectric power factor. It has been observed that the thermal conductivity increased with the deepening degree of oxygen-reduction, which indicates that the scattering of the oxygen vacancies produced by reduction does not play a dominant role in the thermal conduction. In spite of the increase of the thermal conductivity, the oxygen-reduction still promoted the thermoelectric figure of merit via the increase of the thermoelectric power factor. And the most heavily reduced Sr0.61Ba0.39Nb2O6 ceramic has the highest thermoelectric figure of merit (~0.18 at 1073 K) among all the samples.


2021 ◽  
Author(s):  
Panupong JAIBAN ◽  
Pimpilai WANNASUT ◽  
Anucha WATCHARAPASORN

Abstract In this work, the influences of Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) addition on phase, microstructure, and thermoelectric properties of Ca3Co4O9 (CCO) were investigated. (1-x)CCO-(x)BCZT ceramics where x = 0, 0.003, 0.005, and 0.010 were fabricated successfully via a conventional solid-state sintering at 1,223 K for 24 hrs. The substitution of BCZT introduced the chemical defects (V''Co, V'''Co, V''Ca) in CCO ceramic, which increased charge carrier concentration and enhanced the electrical conductivity. The presence of Co3+ improved the Seebeck coefficients of CCO ceramic. The thermal conductivity of CCO ceramic decreased when BCZT was added. The addition of BCZT at x = 0.010 promoted the highest thermoelectric power factor (PF~235 mW/mK2), and the highest figure of merit (ZT~0.5) at 800 K, which present this ceramic an alternative p-type oxide thermoelectric for a high-temperature thermoelectric device.


2021 ◽  
Author(s):  
Chun Hung Suen ◽  
Songhua Cai ◽  
Hui Li ◽  
Long Zhang ◽  
Kunya Yang ◽  
...  

Abstract Achieving high thermoelectric power factor in thin film heterostructures is essential for integrated and miniatured thermoelectric device applications. In this work, we demonstrate a mechanism and device performance of enhanced thermoelectric power factor through coupling the interfacial confined two-dimensional electron gas (2DEG) with thin film conductivity in a transition metal dichalcogenides-SrTiO3 heterostructure. Owing to the formed conductive interface with two-dimensional electron confinement effect and the elevated conductivity, the ZrTe2/SrTiO3 (STO) heterostructure presents enormous thermoelectric power factor as high as 4×10^5 μW/cmK^2 at 20 K and 4800 μW/cmK^2 at room temperature. Formation of quasi-two-dimensional electrons gas at the interface is attributed to the giant Seebeck coefficient, and enhanced electrical conductivity is suggested to be originated from charge transfer induced doping in the ZrTe2, which leads to extremely large thermoelectric power factor. By taking the thermal conductivity of STO substrate as a reference, the effective zT value of this heterostructure can reach 1.5 at 300 K. This high thermoelectric figure of merit is demonstrated by a prototype device based on this heterostructure which results in 3K temperature cooling by passing through a current of 100 mA. This superior thermoelectric property makes this heterostructure a promising candidate for future thermoelectric device, and more importantly, paves a new pathway to design promising high-performance thermoelectric systems.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe6000
Author(s):  
Lin Yang ◽  
Madeleine P. Gordon ◽  
Akanksha K. Menon ◽  
Alexandra Bruefach ◽  
Kyle Haas ◽  
...  

Organic-inorganic hybrids have recently emerged as a class of high-performing thermoelectric materials that are lightweight and mechanically flexible. However, the fundamental electrical and thermal transport in these materials has remained elusive due to the heterogeneity of bulk, polycrystalline, thin films reported thus far. Here, we systematically investigate a model hybrid comprising a single core/shell nanowire of Te-PEDOT:PSS. We show that as the nanowire diameter is reduced, the electrical conductivity increases and the thermal conductivity decreases, while the Seebeck coefficient remains nearly constant—this collectively results in a figure of merit, ZT, of 0.54 at 400 K. The origin of the decoupling of charge and heat transport lies in the fact that electrical transport occurs through the organic shell, while thermal transport is driven by the inorganic core. This study establishes design principles for high-performing thermoelectrics that leverage the unique interactions occurring at the interfaces of hybrid nanowires.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver S. Dewey ◽  
Lauren W. Taylor ◽  
Mitchell A. Trafford ◽  
...  

AbstractLow-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m−1 K−2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.


2020 ◽  
Vol 20 (6) ◽  
pp. 3636-3646
Author(s):  
Manoj Kumar ◽  
Sanju Rani ◽  
Yogesh Singh ◽  
V. N. Singh

Thermoelectric is a device that converts heat into electricity. As thermodynamically it is not possible to make device which is 100 percent efficient, some amount of energy is wasted in the form of heat. Thermoelectric materials can play a major role in harnessing such waste energy. Although thermoelectric is a useful device still its efficiency is not good enough for commercialization. Therefore, lots of research have been carried out in finding out the best possible material, device geometry etc. There are thousands of papers describing various optimization processes. The present work reviews the basics of thermoelectric device parameters which determine the performance of the device and how to control these parameters for better thermoelectric efficiency. The efforts made to optimize parameters like power factor, thermal conductivity etc. have been summarized. Experimental results have been described with examples. Highest reported ZT values of various materials have been presented in this review.


Sign in / Sign up

Export Citation Format

Share Document