Heat Induced Fracturing of Rock in an Existing Uniaxial Stress Field

1985 ◽  
Vol 50 ◽  
Author(s):  
J. I. Mathis ◽  
O. Stehpansson ◽  
B. Bjarnason ◽  
H. Hakami ◽  
A. Herdocia ◽  
...  

AbstractThe thermal fracturing of rock has been the object of several research projects, notably for initial rock breakage in mining [4] as well as crushing [6] In addition, the process has been studied carefully in regards to the storage of radioactive waste underground where rock fracturing could lead to a loss of radioactivity confinement. The Stripa Project, a project concerning large scale testing of procedures for underground storage of nuclear waste, probably has dealt most thoroughly with this subject by theoretical studies and in-situ heater testing in an attempt to describe the thermal failure process in rock [13]This project was designed to test the agreement between theoretical and actual rock fracture times of a rock block, loaded with a physical as well as a thermal load. Laboratory testing consisted of physically loading center-drilled cubes of rock, 0.3 m on a side, uniaxially from 0 to 25 MPa. These were then thermally loaded with a nominal 3.7 kW (factory rating) cylindrical heater until failure occurred. This time to failure was recorded for comparison with a direct mathematical and a finite element solution. For both cases, calculations were performed at specific time-steps and an estimated failure time calculated from the compiled results.

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 836
Author(s):  
Irene Mariñas-Collado ◽  
M. Jesús Rivas-López ◽  
Juan M. Rodríguez-Díaz ◽  
M. Teresa Santos-Martín

An accelerated life test of a product or material consists of the observation of its failure time when it is subjected to conditions that stress the usual ones. The purpose is to obtain the parameters of the distribution of the time-to-failure for usual conditions through the observed failure times. A widely used method to provoke an early failure in a mechanism is to modify the temperature at which it is used. In this paper, the statistically optimal plan for Accelerated Failure Time (AFT) models, when the accelerated failure process is described making use of Arrhenius or Eyring equations, was calculated. The result was a design that had only two stress levels, as is common in other AFT models and that is not always practical. A new compromise plan was presented as an alternative to the widely used “4:2:1 plan”. The three-point mixture design proposed specified a support point in the interval that was optimal for the estimation of the parameters in AFT models, rather than simply the middle point. It was studied in comparison to different commonly used designs, and it proved to have a higher D-efficiency than the others.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rongchao Xu ◽  
Yiding Jin ◽  
Yumin Zhang

Rockburst is a highly destructive geological disaster caused by excavation and unloading of hard and brittle rock mass under high geostress environment. Quantitative evaluation of rock brittleness and rockburst proneness is one of the important tasks in potential rockburst assessment. In this study, uniaxial compression and acoustic emission tests were carried out for basalt, granite, and marble, and their brittleness and rockburst proneness were quantitatively evaluated. The acoustic emission evolution characteristics of the three rocks during uniaxial compression were analyzed, and the differences of fracture mechanism of the three rocks were compared. The results show that (1) based on the brittleness evaluation index, basalt is the most brittle rock, followed by granite, and marble is the weakest; (2) based on the rockburst proneness evaluation index, combined with the macroscopic failure phenomenon and morphology of the samples, the rockburst proneness of basalt is the strongest, followed by granite, and marble is the weakest; (3) there exists a positive correlation between rockburst proneness and brittleness, and the fitting results show that they are approximately exponential; and (4) brittleness has an important influence on the rock fracture mechanism. Unlike marble, basalt and granite with strong brittleness continuously present high-energy acoustic emission signals in the stage of unstable crack propagation, and large-scale fracture events continue to occur; from the calculation results of the acoustic emission b value, the stronger the brittleness of rock, the larger the proportion of large-scale fracture events in the failure process.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 955
Author(s):  
Vasyl Teslyuk ◽  
Andriy Sydor ◽  
Vincent Karovič ◽  
Olena Pavliuk ◽  
Iryna Kazymyra

Technical systems in the modern global world are rapidly evolving and improving. In most cases, these are large-scale multi-level systems and one of the problems that arises in the design process of such systems is to determine their reliability. Accordingly, in the paper, a mathematical model based on the Weibull distribution has been developed for determining a computer network reliability. In order to simplify calculating the reliability characteristics, the system is considered to be a hierarchical one, ramified to level 2, with bypass through the level. The developed model allows us to define the following parameters: the probability distribution of the count of working output elements, the availability function of the system, the duration of the system’s stay in each of its working states, and the duration of the system’s stay in the prescribed availability condition. The accuracy of the developed model is high. It can be used to determine the reliability parameters of the large, hierarchical, ramified systems. The research results of modelling a local area computer network are presented. In particular, we obtained the following best option for connecting workstations: 4 of them are connected to the main hub, and the rest (16) are connected to the second level hub, with a time to failure of 4818 h.


Author(s):  
M. H. Hu

Abstract This paper presents an analysis method for reliability measures of a system with step changes in failure and repair rates. Both failure and repair time have exponential function of time. Such a system is called a stepwise exponential distribution system. This kind of failure process can take place in various equipments. This paper deals with the system having components in series arrangement. Bayesian statistics is used in defining prior and posterior probability density functions of failure and repair rates. These functions provide information for the estimation of reliability measures: 1) failure and repair rates, 2) mean time to failure, 3) mean time to repair, 4) reliability function and 5) availability. A sample problem is given to illustrate the methodology. The Bayesian estimation of the stepwise exponential distribution model is useful in the planning of equipment predictive maintenance.


Author(s):  
G. Vijayalakshmi

With the increasing demand for high availability in safety-critical systems such as banking systems, military systems, nuclear systems, aircraft systems to mention a few, reliability analysis of distributed software/hardware systems continue to be the focus of most researchers. The reliability analysis of a homogeneous distributed software/hardware system (HDSHS) with k-out-of-n : G configuration and no load-sharing nodes is analyzed. However, in practice the system load is shared among the working nodes in a distributed system. In this paper, the dependability analysis of a HDSHS with load-sharing nodes is presented. This distributed system has a load-sharing k-out-of-(n + m) : G configuration. A Markov model for HDSHS is developed. The failure time distribution of the hardware is represented by the accelerated failure time model. The software faults are detected during software testing and removed upon failure. The Jelinski–Moranda software reliability model is used. The maintenance personal can repair the system up on both software and hardware failure. The dependability measures such as reliability, availability and mean time to failure are obtained. The effect of load-sharing hosts on system hazard function and system reliability is presented. Furthermore, an availability comparison of our results and the results in the literature is presented.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1994
Author(s):  
Yanchen Liu ◽  
Minfang Peng ◽  
Xingle Gao ◽  
Haiyan Zhang

The prevention of cascading failures and large-scale power outages of power grids by identifying weak links has become one of the key topics in power systems research. In this paper, a vulnerability radius index is proposed to identify the initial fault, and a fault chain model of cascading failure is developed with probabilistic attributes to identify the set of fault chains that have a significant impact on the safe and stable operation of power grids. On this basis, a method for evaluating the vulnerability of transmission lines based on a multi-criteria decision analysis is proposed, which can quickly identify critical transmission lines in the process of cascading failure. Finally, the proposed model and method for identifying vulnerable lines during the cascading failure process is demonstrated on the IEEE-118 bus system.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hongxiang Jiang ◽  
Changlong Du ◽  
Songyong Liu ◽  
Liping Wang

Rock breakage by coupled mechanical and hydraulic action has been developed over the past several decades, but theoretical study on rock fragmentation by mechanical tool with water pressure assistance was still lacking. The theoretical model of rock breakage by mechanical tool was developed based on the rock fracture mechanics and the solution of Boussinesq’s problem, and it could explain the process of rock fragmentation as well as predicating the peak reacting force. The theoretical model of rock breakage by coupled mechanical and hydraulic action was developed according to the superposition principle of intensity factors at the crack tip, and the reacting force of mechanical tool assisted by hydraulic action could be reduced obviously if the crack with a critical length could be produced by mechanical or hydraulic impact. The experimental results indicated that the peak reacting force could be reduced about 15% assisted by medium water pressure, and quick reduction of reacting force after peak value decreased the specific energy consumption of rock fragmentation by mechanical tool. The crack formation by mechanical or hydraulic impact was the prerequisite to improvement of the ability of combined breakage.


Buildings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 206
Author(s):  
Gerzhova ◽  
Blanchet ◽  
Dagenais ◽  
Côté ◽  
Ménard

Currently, green roof fire risks are not clearly defined. This is because the problem is still not well understood, which raises concerns. The possibility of plants catching fire, especially during drought periods, is one of the reasons for necessary protection measures. The potential fire hazard for roof decks covered with vegetation has not yet been fully explored. The present study analyzes the performance of green roofs in extreme heat conditions by simulating a heat transfer process through the assembly. The main objective of this study was to determine the conditions and time required for the roof deck to reach a critical temperature. The effects of growing medium layer thickness (between 3 and 10 cm), porosity (0.5 to 0.7), and heating intensity (50, 100, 150, and 200 kW/m²) were examined. It was found that a green roof can protect a wooden roof deck from igniting with only 3 cm of soil coverage when exposed to severe heat fluxes for at least 25 minutes. The dependency of failure time on substrate thickness decreases with increasing heating load. It was also found that substrate porosity has a low impact on time to failure, and only at high heating loads.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1532
Author(s):  
Abdulhakim A. Albabtain ◽  
Mansour Shrahili ◽  
Lolwa Alshagrawi ◽  
Mohamed Kayid

A novel methodology for modelling time to failure of systems under a degradation process is proposed. Considering the method degradation may have influenced the failure of the system under the setup of the model several implied lifetime distributions are outlined. Hazard rate and mean residual lifetime of the model are obtained and a numerical situation is delineated to calculate their amounts. The problem of modelling the amount of degradation at the failure time is also considered. Two monotonic aging properties of the model is secured and a characterization property of the symmetric degradation models is established.


Sign in / Sign up

Export Citation Format

Share Document