Microstructure of Ultra High Dose Self Implanted Silicon

1997 ◽  
Vol 504 ◽  
Author(s):  
X. F. Zhu ◽  
J. S. Williams ◽  
D. J. Llewellyn ◽  
J. C. McCallum

ABSTRACTThis study has investigated the microstructure of ultra high dose (∼ 1018 cm−2) self implantation into Si. Implants have been carried out into both (100) Si and pre-amorphised Si as a function of implant temperature between liquid nitrogen temperature and 350°C. Results show that high dose implantation into completely amorphous Si (a-Si) produces layers which regrow quite well during subsequent solid phase epitaxy. In contrast, implantation into crystalline Si (c-Si) or part amorphous/part crystalline Si can lead to rich and varied microstructures at elevated temperatures, even extending to porous-like structures in some cases. Strong dynamic annealing and agglomeration of points defects in c-Si is thought to be responsible for such behaviour.

1989 ◽  
Vol 4 (2) ◽  
pp. 412-416 ◽  
Author(s):  
D. B. Poker ◽  
D. K. Thomas

The solid-phase epitaxy of LiNbO3 following ion implantation of Ti dopant for the purpose of producing optical waveguides has been studied. Implanting 360-keV Ti at liquid nitrogen temperature produces a highly damaged region extending to a depth of about 400 nm. This essentially amorphous region can be recrystallized epitaxially by annealing in a water-saturated oxygen atmosphere at temperatures near 400 °C. though complete removal of all irradiation-induced damage requires temperatures in excess of 600 °C. The activation energy of the regrowth is 2.0 eV for implanted fluences below 3 ⊠ 1016 Ti/cm2. At higher fluences the regrowth proceeds more slowly, and Ti dopant segregates at the regrowth interface. Complete recrystallization following high-dose implantation requires annealing temperatures in excess of 800 °C.


1990 ◽  
Vol 57 (13) ◽  
pp. 1340-1342 ◽  
Author(s):  
J. A. Roth ◽  
G. L. Olson ◽  
D. C. Jacobson ◽  
J. M. Poate

1984 ◽  
Vol 56 (2) ◽  
pp. 279-285 ◽  
Author(s):  
Yasuo Kunii ◽  
Michiharu Tabe ◽  
Kenji Kajiyama

1985 ◽  
Vol 53 ◽  
Author(s):  
F. Namavar ◽  
J. I. Budnick ◽  
F. H. Sanchez ◽  
H. C. Hayden

ABSTRACTWe have carried out a study to understand the mechanisms involved in the formation of buried SIO2 by high dose implantation of oxygen into Si targets. Oxygen ions were implanted at 150 keV with doses up to 2.5 X 1018 ions/cm2 and a current density of less than 10 μA/cm2 into Si 〈100〉 at room and liquid nitrogen temperatures. In-situ Rutherford backscattering (RBS) analysis clearly indicates the formation of uniform buried SIO2 for both room and liquid nitrogen temperatures for doses above 1.5 X 1018/cm2.Oxygen ions were implanted at room temperature into crystalline quartz to doses of about 1018 ions cm2 at 150 keV, with a current density of 〈10〉10 μA/cm2. The RBS spectra of the oxygen implanted quartz cannot be distinguished from those of unimplanted ones. Furthermore, Si ions were implanted into crystalline quartz at 80 keV and dose of 1 X 1017 Si/cm2, and a current aensity of about 1 μA/cm2. However, no signal from Si in excess of the SiO2 ratio could be observed. Our results obtained by RBS show that implantation of either Si+ or O into SiO2 under conditions stated above does not create a layer whose Si:O ratio differs measurably from that of SiO2.


1991 ◽  
Vol 235 ◽  
Author(s):  
Kin Man Yu ◽  
Ian G. Brown ◽  
Seongil Im

ABSTRACTWe have synthesized single crystal Si1−xGex alloy layers in Si <100> crystals by high dose Ge ion implantation and solid phase epitaxy. The implantation was performed using the metal vapor vacuum arc (Mevva) ion source. Ge ions at mean energies of 70 and 100 keV and with doses ranging from 1×1016 to to 7×1016 ions/cm2 were implanted into Si <100> crystals at room temperature, resulting in the formation of Si1−xGex alloy layers with peak Ge concentrations of 4 to 13 atomic %. Epitaxial regrowth of the amorphous layers was initiated by thermal annealing at temperatures higher than 500°C. The solid phase epitaxy process, the crystal quality, microstructures, interface morphology and defect structures were characterized by ion channeling and transmission electron microscopy. Compositionally graded single crystal Si1−xGex layers with full width at half maximum ∼100nm were formed under a ∼30nm Si layer after annealing at 600°C for 15 min. A high density of defects was found in the layers as well as in the substrate Si just below the original amorphous/crystalline interface. The concentration of these defects was significantly reduced after annealing at 900°C. The kinetics of the regrowth process, the crystalline quality of the alloy layers, the annealing characteristics of the defects, and the strains due to the lattice mismatch between the alloy and the substrate are discussed.


1995 ◽  
Vol 388 ◽  
Author(s):  
Xiang Lu ◽  
Nathan W. Cheung

AbstractSi1-x-yGexCy/Si heterostuctures were formed on Si (100) surface by Ge and C implantation with a high dose rate MEtal - Vapor Vacuum arc (MEVVA) ion source and subsequent Solid Phase Epitaxy (SPE). after thermal annealing in the temperature range from 600 °C to 1200 °C, the implanted layer was studied using Rutherford Back-scattering Spectrometry (RBS), cross-sectional High Resolution Transmission Electron Microscopy (HRTEM) and fourbounce X-ray Diffraction (XRD) measurement. Due to the small lattice constant and wide bandgap of SiC, the incorporation of C into Si-Ge can provide a complementary material to Si-Ge for bandgap engineering of Si-based heterojunction structure. Polycrystals are formed at temperature at and below 1000 °C thermal growth, while single crystal epitaxial layer is formed at 1100 °C and beyond. XRD measurements near Si (004) peak confirm the compensation of the Si1-x Gex lattice mismatch strain by substitutional C. C implantation is also found to suppress the End of Range (EOR) defect growth.


1992 ◽  
Author(s):  
H. Ishiwara ◽  
H. Wakabayashi ◽  
K. Miyazaki ◽  
K. Fukao ◽  
A. Sawaoka

1985 ◽  
Vol 24 (Part 2, No. 7) ◽  
pp. L513-L515 ◽  
Author(s):  
Hiroshi Ishiwara ◽  
Akihiro Tamba ◽  
Hiroshi Yamamoto ◽  
Seijiro Furukawa

2010 ◽  
Vol 518 (9) ◽  
pp. 2317-2322 ◽  
Author(s):  
B.C. Johnson ◽  
P. Caradonna ◽  
D.J. Pyke ◽  
J.C. McCallum ◽  
P. Gortmaker

Sign in / Sign up

Export Citation Format

Share Document