Low-Temperature PECVD Polysilicon Crystallization by Rapid Thermal Processing

1998 ◽  
Vol 508 ◽  
Author(s):  
Mark Stewart ◽  
Howard Hovagimian ◽  
Jecko Arakkal ◽  
Sambit Saha ◽  
Miltiadis K. Hatalis

AbstractThis work investigates the solid phase crystallization of PECVD amorphous silicon films by rapid thermal processing (RTP) as an alternative to laser crystallization. It is shown that PECVD films can be crystallized by RTP at temperatures compatible with glass substrates. A statistical design approach was used to investigate the effect of the various deposition and annealing conditions on the crystallization temperature, material properties and TFT device performance. The investigated variables include deposition temperature, rf power, pressure, surface treatments, dehydrogenation treatment, source gas, dilutant gas, and RTP scan speed. Important deposition and crystallization parameters will be discussed regarding polysilicon film optimization.

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Kuninori Kitahara ◽  
Toshitomo Ishii ◽  
Junki Suzuki ◽  
Takuro Bessyo ◽  
Naoki Watanabe

Raman microscopy was applied to characterize polycrystalline silicon (poly-Si) on glass substrates for application as thin-film transistors (TFTs) integrated on electronic display panels. This study examines the crystallographic defects and stress in poly-Si films grown by industrial techniques: solid phase crystallization and excimer laser crystallization (ELC). To distinguish the effects of defects and stress on the optical-phonon mode of the Si–Si bond, a semiempirical analysis was performed. The analysis was compared with defect images obtained through electron microscopy and atomic force microscopy. It was found that the Raman intensity for the ELC film is remarkably enhanced by the hillocks and ridges located around grain boundaries, which indicates that Raman spectra mainly reflect the situation around grain boundaries. A combination of the hydrogenation of films and the observation of the Si-hydrogen local-vibration mode is useful to support the analysis on the defects. Raman microscopy is also effective for detecting the plasma-induced damage suffered during device processing and characterizing the performance of Si layer in TFTs.


1981 ◽  
Vol 4 ◽  
Author(s):  
D. Bensahel ◽  
G. Auvert ◽  
V. T. Nguyen ◽  
G. A. Rozgonyi

ABSTRACTIt has been found that careful control of the laser power and scan speed will convert deposited a­Si into continuous lines of uniformly crystallized silicon. Two solid phase “explosive” crystallization front velocities of 1000 cm/sec and 1400 cm/sec have been experimentally determined by matching the laser scan velocity with the runaway a–c phase boundary. If solid phase explosive crystallization is suppressed by pre-annealing, then a liquid assisted runaway crystallization velocity of 220 cm/sec is observed, as well as a continuous furnace-like crystallization process at 250 cm/sec.


1987 ◽  
Vol 92 ◽  
Author(s):  
Susan B. Felch ◽  
David T. Hodul ◽  
Mak Salimian Mak Salimian

ABSTRACTRapid thermal processing has previously been observed to affect the dielectric integrity of thin oxides.' In order to study this phenomenon in more detail, we have fabricated a set of wafers with 290 Å thick gate oxide and patterned pads of 2000 Å thick doped polysilicon. Some of the pads were patterned with a wet etch, while others were dry etched in a commercial reactive ion etcher (RIE), which is suspected to be a damaging process. To simulate a self-aligned MOS process, some of the patterned wafers were also ion implanted with 70 keV, 2E15 As+/cm2 . Subsequently, all of the wafers were rapidly annealed in a Varian RTP-800 lamp annealer under a variety of conditions (lO00-1100°C, 10-30 sec), and the breakdown characteristics of the MOS capacitors were measured. A few control samples were annealed in a furnace. It was found that the rapid annealing cycle without ion implantation or dry etching caused no deterioration of the oxide quality. However, rapid annealing after either RIE or implantation does result in oxide breakdowns at lower voltages, with those capacitors having higher perimeter-toarea ratios affected to a greater degree. The effect of capacitor shape and annealing conditions on breakdown statistics and uniformity will be presented and discussed in light of possible ion bombardment damage during RIE and oxide charging during ion implantation. Several mechanisms explaining the breakdown properties will be discussed.


1985 ◽  
Vol 45 ◽  
Author(s):  
J.C. Bean ◽  
A.T. Fiory ◽  
L.C. Hopkins

ABSTRACTEpitaxial Ge-Si alloy films were grown on Si(100) by molecular beam epitaxy, subsequently given a shallow P implant, and subjected to rapid thermal processing. Heat treatment causes solid-phase epitaxial regrowth of the amorphized implanted layer similar to the case of pure Ge. Phosphorus redistribution, loss, and trapping at the Ge-Si/Si interface are also observed. Anomalous electrical activation is observed for P concentrations below 1 at.%, where the-carriers are either trapped or compensated at room temperature, but not below 100K. Analyses were carried out by Rutherford backscattering and channeling, secondary ion mass spectrometry, and temperature-dependent electrical transport.


Solar Energy ◽  
2006 ◽  
Author(s):  
Sachin S. Kulkarni ◽  
Jyoti S. Shirolikar ◽  
Neelkanth G. Dhere

Rapid thermal processing (RTP) provides a way to rapidly heat substrates to an elevated temperature to perform relatively short duration processes, typically less than 2–3 minutes long. RTP can be utilized to minimize the process cycle time without compromising process uniformity, thus eliminating a bottleneck in CuIn1-xGaxSe2-ySy (CIGSS) module fabrication. Some approaches have been able to realize solar cells with conversion efficiencies close or equal to those for conventionally processed solar cells with similar device structures. Florida Solar Energy Center (FSEC) PV Materials Lab has developed excellent facilities for the preparation of CIGSS thin-film solar cells. A RTP reactor for preparation of CIGSS thin films on 10 cm × 10 cm substrates has been designed, assembled and tested at the FSEC PV Materials Lab. This paper describes the synthesis and characterization of CIGSS thin-film solar cells by RTP technique. Materials characterization of these films was done by SEM, XEDS, XRD, AES, EPMA and electrical characterization was done by current-voltage measurements on soda lime glass substrates by RTP technique. Encouraging results were obtained during the first few experimental sets, demonstrating that reasonable solar cell efficiencies (up to 9%) can be achieved with relatively shorter cycle times, lower thermal budgets and without using toxic gases.


1998 ◽  
Vol 507 ◽  
Author(s):  
Yongqian Wang ◽  
Xianbo Liao ◽  
Hongwei Diao ◽  
Jie He ◽  
Zhixun Ma ◽  
...  

ABSTRACTA novel pulsed rapid thermal processing (PRTP) method has been used for realizing the solid-phase crystallization of amorphous silicon films prepared by PECVD. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results indicate that this PRTP is a suitable postcrystallization technique for fabricating large-area polycrystalline silicon films with good structural qualities such as large grain size, small lattice microstain and smooth surface morphology on low-cost substrate.


2013 ◽  
Vol 753 ◽  
pp. 505-509
Author(s):  
Yuichi Sato ◽  
Toshifumi Suzuki ◽  
Hiroyuki Mogami ◽  
Fumito Otake ◽  
Hirotoshi Hatori ◽  
...  

Solid phase growth of thin films of copper (Cu), aluminum (Al) and zinc oxide (ZnO) on single crystalline sapphire and quartz glass substrates were tried by heat-treatments and their crystallization conditions were investigated. ZnO thin films relatively easily recrystallized even when they were deposited on the amorphous quartz glass substrate. On the other hand, Cu and Al thin films hardly recrystallized when they were deposited on the quartz glass substrate. The metal thin films could be recrystallized at only extremely narrow windows of the heat-treatment conditions when they were deposited on the single crystalline sapphire substrate. The window of the solid phase heteroepitaxial growth condition of the Al film was wider than that of the Cu film.


Sign in / Sign up

Export Citation Format

Share Document