Fabrication and Properties of Syntactic Magnesium Foams

1998 ◽  
Vol 521 ◽  
Author(s):  
M. Hartmann ◽  
K. Reindel ◽  
R. F. Singer

ABSTRACTSyntactic magnesium foams which consist of thin-walled hollow alumina spheres embedded in a magnesium matrix were fabricated by infiltrating a three-dimensional array of hollow spheres with a magnesium melt by using a gas pressure-assisted casting technique.The resulting composite contains closed cells of homogeneous and isotropic morphology. The densities of the syntactic magnesium foams were between 1.0 and 1.4 g/cm3. The densities were controlled by variations in the bulk density of the hollow spheres with the volume fraction of spheres kept constant at approximately 63 %.Compressive deformation characteristics of the composites were evaluated with respect to the influence of matrix strength and sphere wall thickness on characteristic variables such as compressive strength, plateau stress and energy absorption efficiency. Differences in the strength of the magnesium-based matrix materials investigated (cp-Mg, AM20, AM50, AZ91) had little influence on the compressive strength of the syntactic foam. However, an increasing relative wall thickness of the hollow ceramic spheres led to a significant strength enhancement. In all cases the ratio between compressive and plateau strength rose with increasing composite strength resulting in decreasing energy absorption efficiency.

2021 ◽  
Vol 889 ◽  
pp. 123-128
Author(s):  
Sheng Jun Liu ◽  
Zhi Qiang Dong ◽  
Ren Zhong Cao ◽  
Da Song ◽  
Jia An Liu ◽  
...  

In this study, the open-cell Mg-2Zn-0.4Y foams were prepared by infiltration casting method. The Ni/Mg hybrid foams were prepared by electroless Ni-P coating on the foam struts to improve the compressive strength and energy absorption capacity. The compressive properties of the Mg alloy foams and Ni/Mg hybrid foams were studied by quasi-static compressive test. The experimental results show that the Ni-P coating is composed of crystallites. The Ni-P coating can significantly enhance the compressive strength, energy absorption capacity and energy absorption efficiency of the foams.


2018 ◽  
Vol 280 ◽  
pp. 301-307
Author(s):  
Z. Zakaria ◽  
C.Y. Yao

This research focuses on the effect of rejected nitrile butadiene rubber (rNBR) gloves particles reinforced epoxy macrospheres (EM) on the physical properties and compressive stress of syntactic foam. Adding rNBR particles on the surface of macrospheres can increase the energy absorption as a result of improving the compressive properties of syntactic foam. Three types of macrospheres have been produced for the fabrication of syntactic foam, namely EM without rNBR, 1-layer rNBR-EM and 2-layer rNBR-EM. The results showed that increased rNBR particles layer on macrospheres has increased the wall thickness, and reduced the radius ratio of macrospheres as well as increased the density of syntactic foams. The compressive strength and modulus of syntactic foam with 2-rNBR-EM increased compared to the syntactic foams of 1-rNBR-EM and EM without rNBR. In addition, the toughness of the 2-rNBR-EM increased compared to the syntactic foams of 1-rNBR-EM and EM without rNBR.


2014 ◽  
Vol 1061-1062 ◽  
pp. 129-132
Author(s):  
Zhuo Chen ◽  
Zhi Xiong Huang ◽  
Bing Yan Jiang

A new type of syntactic foam fabricated with four types of hollow microspheres (HGMs) were prepared and its compressive properties were tested following ASTM D 695-96 standard. The HGMs were designed to have specific size distribution and wall thickness. The compressive strength and modulus of the new syntactic foam were compared with those prepared with single type of HGMs. With same density, the new syntactic foam have better compressive properties.


2013 ◽  
Vol 701 ◽  
pp. 291-295
Author(s):  
Norwanis Hasan ◽  
Syed Fuad Saiyid Hashim ◽  
Zulkifli Mohamad Ariff

An innovative technique in producing cement syntactic foam (CSF) was proposed in this investigation. This cellular composite material basically consists of a cement matrix embedded with in-house developed cement hollow spheres (CHS). The produced foams incorporated with CHS having different wall thickness, were characterized for compressive strength and then compared with that of plain cement. It was observed that the CSFs were 37%-55% lighter than the plain cement but possessed compromised compressive strength. The comparative compressive properties of CSFs were also evaluated and reported. It was found that the CSF incorporated with thicker-coated CHS showed higher compressive strength compared to that of incorporated with thinner-coated CHS. The failure patterns within the test samples were also examined to determine the failure mechanism. These observations showed that both CSFs exhibited shearing type failure but exhibit different types of crack fractures due to the difference in CHS wall thickness.


2014 ◽  
Vol 670-671 ◽  
pp. 630-633
Author(s):  
Zhuo Chen ◽  
Zhou Zhou ◽  
Bing Yan Jiang

This paper addresses elastic analysis based on 3D finite element model for hollow sphere structures. In finite element models, which were analyzed under pressure of 1MPa, volume fraction of hollow spheres is kept at 30%, and hollow spheres are randomly located in the matrix. Five types of hollow sphere are used to form the model. All the types of hollow spheres have 60μm particle sizes, but different wall thicknesses. A comparison in stress distribution between the hollow sphere and matrix is made, which shows that in composites containing thin-walled hollow particles the maximum stress is located in the inner surface of particle wall, whereas increasing the wall thickness of hollow spheres results in getting some part of matrix around hollow spheres involved in energy absorption. Moreover, the location of the maximum stress in matrix related closely to the spatial arrangement of the particles. The study provides an insight into the micro structural performance of syntactic foam under load.


2018 ◽  
Vol 933 ◽  
pp. 41-48 ◽  
Author(s):  
Chao Qun Guo ◽  
Ya Dong Sun ◽  
Yun Zhou ◽  
Bo Xie ◽  
Tian Yao Wang ◽  
...  

Copper foams by using CaCl2 as space holder were successfully manufactured by sintering and dissolution process. The porosity ranges from 75% to 91%, and cell size from 0.3mm to 3.0m. The volume fraction of CaCl2 and sintering temperature are the main factors that affect porosity of copper foam. The yield plateau stress of copper foams with porosity between 75.88% and 90.19% is in range of 12.1~1.2MPa. The yield plateau stress decreases with the increase of porosity. The energy absorption per unit volume (W) copper foams with porosity between 75.88% and 90.19% is in range of 6.17~0.63MJ/m3. Under the condition of identical porosity, the absorption energy per unit volume (W) of copper foam is about 43% higher than aluminum foam. The maximum ideal energy absorption efficiency of copper foam is about 0.74, it indicates that the copper foam can be used as a good absorbing material.


2021 ◽  
Vol 15 (2) ◽  
pp. 8169-8177
Author(s):  
Berkay Ergene ◽  
İsmet ŞEKEROĞLU ◽  
Çağın Bolat ◽  
Bekir Yalçın

In recent years, cellular structures have attracted great deal of attention of many researchers due to their unique properties like exhibiting high strength at low density and great energy absorption. Also, the applications of cellular structures (or lattice structures) such as wing airfoil, tire, fiber and implant, are mainly used in aerospace, automotive, textile and biomedical industries respectively. In this investigation, the idea of using cellular structures in pipes made of acrylonitrile butadiene styrene (ABS) material was focused on and four different pipe types were designed as honeycomb structure model, straight rib pattern model, hybrid version of the first two models and fully solid model. Subsequently, these models were 3D printed by using FDM method and these lightweight pipes were subjected to compression tests in order to obtain stress-strain curves of these structures. Mechanical properties of lightweight pipes like elasticity modulus, specific modulus, compressive strength, specific compressive strength, absorbed energy and specific absorbed energy were calculated and compared to each other. Moreover, deformation modes were recorded during all compression tests and reported as well. The results showed that pipe models including lattice wall thickness could be preferred for the applications which don’t require too high compressive strength and their specific energy absorption values were notably capable to compete with fully solid pipe structures. In particular, rib shape lattice structure had the highest elongation while the fully solid one possessed worst ductility. Lastly, it is pointed out that 3D printing method provides a great opportunity to have a foresight about production of uncommon parts by prototyping.


Author(s):  
Mengyan Shi ◽  
Jiayao Ma ◽  
Yan Chen ◽  
Zhong You

Thin-walled tubes as energy absorption devices are widely in use for their low cost and high manufacturability. Employing origami technique on a tube enables induction of a predetermined failure mode so as to improve its energy absorption efficiency. Here we study the energy absorption of a hexagonal tubular device named the origami crash box numerically and theoretically. Numerical simulations of the quasi-static axial crushing show that the pattern triggers a diamond-shaped mode, leading to a substantial increase in energy absorption and reduction in initial peak force. The effects of geometric parameters on the performance of the origami crash box are also investigated through a parametric study. Furthermore, a theoretical study on the deformation mode and energy absorption of the origami crash box is carried out, and a good match with numerical results is obtained. The origami crash box shows great promise in the design of energy absorption devices.


2018 ◽  
Vol 777 ◽  
pp. 569-574
Author(s):  
Zhong You Xie

Due to thin skins and soft core, it is apt to local indentation inducing the concurrence of geometrical and material nonlinearity in sandwich structures. In the paper, finite element simulation is used to investigate the bending behavior of lightweight sandwich beams under large deflection. A modified formulation for the moment at mid-span section of sandwich beams under large deflection is presented, and energy absorption performance is assessed based on energy absorption efficiency. In addition, it is found that no local indentation arises initially, while later that increases gradually with loading displacement increasing. The height of the mid-span section as well as load-carrying capacity decreases significantly with local indentation depth increasing.


Sign in / Sign up

Export Citation Format

Share Document