A Study On High Coercivity And Lio Ordered Phase In Copt And Fept Thin Films

1999 ◽  
Vol 562 ◽  
Author(s):  
R. A. Ristau ◽  
K. Barmak ◽  
L. H. Lewis ◽  
K. R. Coffey ◽  
J. K. Howard

ABSTRACTThis study relates the microstructure of equiatomic binary alloys of CoPt and FePt with their room-temperature hysteretic magnetic properties, particularly their high coercivity. A transformation from an atomically disordered, face-centered-cubic structure to the Li0 ordered structure occurred during post-deposition annealing and was characterized using digital analysis of dark-field transmission electron microscopy (TEM) images. The transformation was observed to follow first-order nucleation and growth kinetics, and the ordered volume fraction transformed was quantified at numerous points during the transformation. The ordered volume fraction was then compared to the magnetic coercivity data obtained from a superconducting quantum interference device (SQUID) magnetometer. Although the relationship most commonly described in the literature is that the highest coercivity corresponds to a two phase ordered/disordered mixture, the maximum value for coercivity in this study was found to correspond to the fully ordered state. Furthermore, in samples that were less than fully ordered, a direct relationship between ordered volume fraction and coercivity was observed. The proposed mechanism for the high coercivity in these films is an increasing density of magnetic domain wall pinning sites concurrent with an increasing fraction of ordered phase.

1999 ◽  
Vol 577 ◽  
Author(s):  
R. A. Ristau ◽  
K. Barmak ◽  
L. H. Lewis ◽  
K. R. Coffey ◽  
J. K. Howard

ABSTRACTThis study relates the microstructure of equiatomic binary alloys of CoPt and FePt with their room-temperature hysteretic magnetic properties, particularly their high coercivity. A transformation from an atomically disordered, face-centered-cubic structure to the Li0 ordered structure occurred during post-deposition annealing and was characterized using digital analysis of dark-field transmission electron microscopy (TEM) images. The transformation was observed to follow first-order nucleation and growth kinetics, and the ordered volume fraction transformed was quantified at numerous points during the transformation. The ordered volume fraction was then compared to the magnetic coercivity data obtained from a superconducting quantum interference device (SQUID) magnetometer. Although the relationship most commonly described in the literature is that the highest coercivity corresponds to a two phase ordered/disordered mixture, the maximum value for coercivity in this study was found to correspond to the fully ordered state. Furthermore, in samples that were less than fully ordered, a direct relationship between ordered volume fraction and coercivity was observed. The proposed mechanism for the high coercivity in these films is an increasing density of magnetic domain wall pinning sites concurrent with an increasing fraction of ordered phase.


2016 ◽  
Vol 22 (6) ◽  
pp. 1244-1250 ◽  
Author(s):  
Jingxu Zheng ◽  
Zhongyuan Luo ◽  
Lida Tan ◽  
Bin Chen

AbstractIn the present study, nano-sized cuboid-shaped particles in Mg–Nd–Y are studied by means of Cs-corrected atomic-scale high-angle annular dark-field scanning transmission electron microscopy. The structure of the cuboid-shaped phase is identified to be yttrium (major component) and neodymium atoms in face-centered cubic arrangement without the participation of Mg. The lattice parameter a=5.15 Å. During isothermal aging at 225°C, Mg3(Nd,Y) precipitates adhere to surface (100) planes of the cuboid-shaped particles with the orientation relationship: $[100]_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} \,/\,\,/\,[100]_{{{\rm Cuboid}}} $ and $[310]_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} \,/\,\,/\,[012]_{{{\rm Cuboid}}} $ . The fully coherent interfaces between the precipitates and the cuboid-shaped phases are reconstructed and categorized into two types: $(400)_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} $ interface and $(200)_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} $ interface.


Author(s):  
N.-H. Cho ◽  
S. McKernan ◽  
C.B. Carter ◽  
K. Wagner

Interest has recently increased in the possibility of growing III-V compounds epitactically on non-polar substrates to produce device quality material. Antiphase boundaries (APBs) may then develop in the GaAs epilayer because it has sphalerite structure (face-centered cubic with a two-atom basis). This planar defect may then influence the electrical behavior of the GaAs epilayer. The orientation of APBs and their propagation into GaAs epilayers have been investigated experimentally using both flat-on and cross-section transmission electron microscope techniques. APBs parallel to (110) plane have been viewed at the atomic resolution and compared to simulated images.Antiphase boundaries were observed in GaAs epilayers grown on (001) Ge substrates. In the image shown in Fig.1, which was obtained from a flat-on sample, the (110) APB planes can be seen end-on; the faceted APB is visible because of the stacking fault-like fringes arising from a lattice translation at this interface.


2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3727
Author(s):  
Huanhuan He ◽  
Zhiwei Lin ◽  
Shengming Jiang ◽  
Xiaotian Hu ◽  
Jian Zhang ◽  
...  

The FeCoNiCrTi0.2 high-entropy alloys fabricated by vacuum arc melting method, and the annealed pristine material, are face centered cubic structures with coherent γ’ precipitation. Samples were irradiated with 50 keV He+ ions to a fluence of 2 × 1016 ions/cm2 at 723 K, and an in situ annealing experiment was carried out to monitor the evolution of helium bubbles during heating to 823 and 923 K. The pristine structure of FeCoNiCrTi0.2 samples and the evolution of helium bubbles during in situ annealing were both characterized by transmission electron microscopy. The annealing temperature and annealing time affect the process of helium bubbles evolution and formation. Meanwhile, the grain boundaries act as sinks to accumulate helium bubbles. However, the precipitation phase seems have few effects on the helium bubble evolution, which may be due to the coherent interface and same structure of γ’ precipitation and matrix.


1997 ◽  
Vol 3 (S2) ◽  
pp. 413-414
Author(s):  
E.M. Hunt ◽  
J.M. Hampikian ◽  
N.D. Evans

Ion implantation can be used to alter the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca+ to a fluence of 5 x 1016 ions/cm2. Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals ≈7 - 8 nm in diameter as seen in Figure 1. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm ± 0.002 nm. The similarity between this crystallography and that of pure aluminum (which is FCC with a lattice parameter of 0.404 nm) suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium.Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals.


2007 ◽  
Vol 26-28 ◽  
pp. 1311-1314 ◽  
Author(s):  
M. Senga ◽  
H. Kumagai ◽  
Tomokazu Moritani ◽  
Minoru Doi

In Ni-13.0at%Si-3.1at%Fe alloy, when γ/γ’ two-phase microstructure formed at 1123 K is isothermally heated at 923 K which is lower than the temperature where the initial γ/γ’ microstructure forms, the phase-separation of γ/γ’ precipitate phase occurs and γ particles newly appear in each cuboidal γ’ precipitate. While in Ni-10.2at%Al-10.8at%Fe alloy, when γ/γ’ two-phase microstructure formed at 1023 K is isothermally heated at 1123 K which is higher than the temperature where the initial γ/γ’ microstructure forms, the phase-separation of γ’ precipitate phase takes place and γ particles newly appear in each cuboidal γ’ precipitate. Such appearance of new γ particles in γ’ precipitates can be explained by the difference in the volume fraction of γ phase that should exist in the γ/γ’ two-phase system depending on the heating temperature.


MRS Advances ◽  
2017 ◽  
Vol 2 (15) ◽  
pp. 841-846 ◽  
Author(s):  
José Maria C. da Silva Filho ◽  
Victor A. Ermakov ◽  
Luiz G. Bonato ◽  
Ana F. Nogueira ◽  
Francisco C. Marques

ABSTRACTWe show that superlattice (SL) of PbS quantum dots (QD) can be easily prepared by drop casting of colloidal QD solution onto glass substrate and the ordering level can be controlled by the substrate temperature. A QD solution was dropped on glass and dried at 25, 40, 70 and 100°C resulting in formation of different SL structures. X-ray diffractograms (XRD) of deposited films show a set of sharp and intense peaks that are higher order satellites of a unique peak at 1.8 degrees (two theta), which corresponds, using the Bragg’s Law, to an interplanar spacing of 5.3 nm. The mean particles diameter, calculated through the broadening of the (111) peak of PbS using the Scherrer’s formula, were in agreement with the interplanar spacing. Transmission electron microscopy (TEM) measurements were also used to study the SL structure, which showed mainly a face centered cubic (FCC) arrangement of the QD. The photoluminescence (PL) spectrum of QD in the SL showed a shift toward lower energy compared to one in solution. It can be attributed to the fluorescence resonant energy transfer (FRET) between neighbors QD´s. Moreover, we observed greater redshift of PL peak for film with lower drying temperature, suggesting that it has a more organized structure.


2019 ◽  
Vol 31 (12) ◽  
pp. 2804-2810
Author(s):  
Anti Kolonial Prodjosantoso ◽  
Oktanio Sigit Prawoko ◽  
Maximus Pranjoto Utomo ◽  
Lis Permana Sari

In this article, the synthesis of silver nanoparticles through a reduction reaction process using Salacca zalacca extract is reported. The AgNPs were characterized using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-visible spectrophotometry methods. The AgNPs antibacterial activity was determined against of Gram-positive bacteria (Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli). The main functional groups contained in Salacca zalacca extract are carbonyl, hydroxyl and nitrile groups, which are believed to reduce the silver ions to metal. The surface plasmon resonance values of brownish red AgNPs are in the range of 410 nm to 460 nm. The structure of AgNPs is face centered cubic (FCC). The diameter of silver nanoparticles crystallite is 14.2 ± 2.6 nm. The AgNPs growth inhibition zones of Escherichia coli and Staphylococcus epidermidis are 9.6 mm and 9.2 mm, respectively.


2010 ◽  
Vol 150-151 ◽  
pp. 1745-1749
Author(s):  
Hai Bo Wang ◽  
Li Ma ◽  
Wei Cai

The microstructure evolution of sputtered polycrystalline Ni54.75Mn13.25Fe7Ga25 ferromagnetic shape memory thin film annealed under different conditions is studied. Microstructure of different annealed films was studied using Transmission Electron Microscope (TEM) and corresponding selected area electron diffraction (SAED) patterns. The result shows that in the microstructure of as-deposited Ni54.75Mn13.25Fe7Ga25 free-standing film, after annealed at 1073 K for different time, the crystalline grain grows up with the increase of the annealing time. By analysis of the SAED patterns, the structure of the thin films change from face-centered cubic austenite to orthorhombic structure martensite compared between the film annealed at 1073 K for 10 mins, 1hr, 4 hrs, and 24 hrs respectively. It indicated that the heat treatment is an effective method of crystallizing behavior for the thin film.


Sign in / Sign up

Export Citation Format

Share Document