Study of Thermal Stability of Cvd Ta205/Si Interface

1999 ◽  
Vol 567 ◽  
Author(s):  
A. Y. Mao ◽  
K. A. Son ◽  
J. M. White ◽  
D. L. Kwong ◽  
D. A. Roberts ◽  
...  

ABSTRACTThe effects of vacuum and inert gas annealing of ultra-thin (20Å) CVD Ta2O5 films deposited on Si substrates, with and without oxynitride interface layer, on the Ta2O5/Si interface stability were examined extensively by means of in-situ X-ray Photoelectron Spectroscopy (XPS), ex-situ Time-of-Flight Secondary Ion mass Spectrometry (ToF-SIMS), and Temperature Programmed Reaction (TPR). When annealed to 680 °C for up to 50 min, changes in ∼ 20Å Ta2O5 films formed on Si(100) are negligible, but annealing to 820 °C for 10 min in vacuum, Ar or N2 produces major chemical restructuring. SiO is formed at the Ta2O5 - Si(100) interfaces and becomes incorporated into the tantalum oxide. A reduced form of Ta, attributed to TaSix, forms at the buried interface. Extending the annealing time to 20 min produces no further changes. SiO desorbs during annealing at 1000 °C. Nitriding Si prior to forming the Ta2O5 film deposition inhibits these processes.

2001 ◽  
Vol 696 ◽  
Author(s):  
R. Würz ◽  
W. Bohne ◽  
W. Fuhs ◽  
J. Röhrich ◽  
M. Schmidt ◽  
...  

AbstractCaF2 films with thicknesses in the monolayer range (<20 Å) were grown on Si(111) by evaporation from a CaF2 source at UHV conditions. They were characterized ex-situ by Heavy-Ion Elastic Recoil Detection Analysis (HI-ERDA), RBS/Channeling, X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM). The F/Ca ratio of the films was found to depend on the growth temperature Ts and to deviate appreciably from the stoichiometric composition (F/Ca=2). Due to an interface reaction which leads to a CaF-interface layer a change from polycrystalline to epitaxial growth occurs at Ts=450°C. At higher temperature film growth started with a closed layer of CaF on top of which CaF2 layers with an increasing fraction of pinholes were formed. By means of a two-step process at different temperatures, the amount of pinholes could be strongly reduced. It was found, that buffer layers of CaF2 with a CaF interface layer introduced in Au/p-Si contacts enhance the barrier height by as much as 0.36eV to values of 0.64eV.


2012 ◽  
Vol 1376 ◽  
Author(s):  
P. Silva-Bermudez ◽  
S. Muhl ◽  
M. Rivera ◽  
S. E. Rodil

ABSTRACTIn the present work, the adsorption of albumin and fibrinogen on Ta, Nb, Ti and Zr oxidesthin films deposited on Si (100) wafers by magnetron sputtering was studied in order to get a better understanding of the correlation among the surface properties of these oxides and the protein adsorption phenomena on their surfaces. The surface energy, hydrophobicity, chemical composition, roughness and atomic order of the films were characterized. The films were immersedfor 45 minutes in single protein solutions; either albumin or fibrinogenand the adsorbed protein layer on the films was studied ex-situ in a dry ambient using bothX-ray photoelectron spectroscopy and atomic force microscopy.The adsorption of albumin and fibrinogen on the films modified the surface morphology and decreased the surface roughness for all the four different metal oxides. The XPS results confirmed the presence of the protein on the surface of the films and showed that the two proteins studied were adsorbed without undergoing a major chemical decomposition. A correlation between the surface roughness,the polar component of the surface energy of the films and the atomic percentage of nitrogen on the films after protein adsorption, an indirect signal of the amount of protein adsorbed, was found for albumin and fibrinogen adsorption on Ta, Nb and Ti oxides; the largest the roughness or the polar component the largest amount of adsorbed protein.


2004 ◽  
Vol 811 ◽  
Author(s):  
Koji Kita ◽  
Masashi Sasagawa ◽  
Masahiro Toyama ◽  
Kentaro Kyuno ◽  
Akira Toriumi

ABSTRACTHfO2 films were deposited by reactive sputtering on Ge and Si substrates simultaneously, and we found not only the interface layer but the HfO2 film was thinner on Ge substrate compared with that on Si substrate. A metallic Hf layer has a crucial role for the thickness differences of both interface layer and HfO2 film, since those thickness differences were observed only when an ultrathin metallic Hf layer was predeposited before HfO2 film deposition. The role of metallic Hf is understandable by assuming a formation of volatile Hf-Ge-O ternary compounds at the early stage of film growth. These results show an advantage of HfO2/Ge over HfO2/Si systems from the viewpoint of further scaling of electrical equivalent thickness of the gate oxide films.


2004 ◽  
Vol 809 ◽  
Author(s):  
Koji Kita ◽  
Masashi Sasagawa ◽  
Masahiro Toyama ◽  
Kentaro Kyuno ◽  
Akira Toriumi

ABSTRACTHfO2 films were deposited by reactive sputtering on Ge and Si substrates simultaneously, and we found not only the interface layer but the HfO2 film was thinner on Ge substrate compared with that on Si substrate. A metallic Hf layer has a crucial role for the thickness differences of both interface layer and HfO2 film, since those thickness differences were observed only when an ultrathin metallic Hf layer was predeposited before HfO2 film deposition. The role of metallic Hf is understandable by assuming a formation of volatile Hf-Ge-O ternary compounds at the early stage of film growth. These results show an advantage of HfO2/Ge over HfO2/Si systems from the viewpoint of further scaling of electrical equivalent thickness of the gate oxide films.


2019 ◽  
Vol 74 (8) ◽  
pp. 697-707 ◽  
Author(s):  
Jessica Kräuter ◽  
Lars Mohrhusen ◽  
Tim Thiedemann ◽  
Michael Willms ◽  
Katharina Al-Shamery

AbstractRutile TiO2 is an important model system for understanding the adsorption and conversion of molecules on transition metal oxide catalysts. In the last decades, point defects, such as oxygen vacancies and Ti3+ interstitials, exhibited an important influence on the reaction of oxygen and oxygen-containing molecules on titania surfaces. In brief, partially reduced TiO2 containing a significant amount of Ti3+ is often more active for the conversion of such molecules. In this study, we investigate an even higher reduced surface prepared by argon ion bombardment of a rutile TiO2 (110) single crystal. By X-ray photoelectron spectroscopy we show that, besides Ti4+, this surface is almost equally dominated by Ti3+ and Ti2+. To probe the reactivity of these highly reduced surfaces, we have adsorbed two different classes of oxygen-containing molecules and utilized temperature programmed reaction spectroscopy to investigate the conversion. While alcohols (in this case methanol) already show a defect-dependent partial conversion in a deoxygenation reaction on the (stochiometric or slightly reduced) rutile TiO2 (110) surface, ketones (e.g. acetone) are usually not converted on the rutile TiO2 (110) surface independent on the bulk defect density. Here, we present a nearly full conversion for both molecules via deoxygenation reactions and reductive C–C coupling, forming different hydrocarbons at different temperatures between 375 K and 640 K on the sputtered Ti2+ rich surface.


1998 ◽  
Vol 555 ◽  
Author(s):  
P. N. K. Deenapanray ◽  
J. Lengyel ◽  
H. H. Tan ◽  
M. Petravic ◽  
A. Durandet ◽  
...  

AbstractSilicon dioxide (SiOx, x ≤ 2) films were plasma-deposited at a pressure of 1 Torr and low substrate temperature (≤ 300°C) by N20/lSiH4 flow. Deposition rates in the range 20–50 nm/min were achieved at 20 W rf source power. Deep level transient spectroscopy showed that no significant defect levels were introduced in the Si substrates at this low source power. The effects of flowrate ratio, R, of N2O/SiH4 and substrate temperature on film properties were determined using ex-situ spectroscopic ellipsometry, prism coupler, Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR) and chemical etching (P-etch). Near-stoichiometric oxide layers were obtained for R ≥ 1, and a decrease in deposition rate with increasing R was observed. The increase in refractive index for R ≤ 1 has been correlated to compositional changes in the thin films. Complementary results were obtained from FFIR and P-etch measurements. Nitrogen was present in the films deposited using R = 4.4, for which the depostion rate showed an Arrhenius-like relationship to substrate temperature. No OH-related bands were observed in our films.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 774
Author(s):  
Fang Huang ◽  
Weizun Li ◽  
Qidong Hou ◽  
Meiting Ju

Production of syngas from lignocellulosic biomass though pyrolysis is a promising solution for the large-scale utilization of biomass. However, current pyrolysis approaches suffer from the relative low product yield and selectivity, limiting their practical application. To solve this problem, a series of nickel-based catalysts including Ni/MCM-41, Ni-5CeO2/MCM-41, and Ni-5La2O3/MCM-41 were prepared and characterized by transmission electron microscopy (TEM), N2 adsorption–desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and H2-temperature-programmed reaction (TPR) analysis. It was observed that the simultaneous addition of Ni and CeO2 to MCM-41 could increase the reducibility of Ni and the number of active Ni0 sites on the surface of the catalyst. Consequently, Ni-5CeO2/MCM-41 gave a CH4 yield of 14.6 mmol/g, which is remarkably higher than that (10.5 mmol/g) obtained in the absence of the catalyst. Meanwhile, the CO and H2 yields increased slightly, while the CO2 yield decreased slightly. Therefore, the improved CH4 yield and selectivity was mainly due to the increased decomposition of tarry compounds catalyzed by Ni/MCM-41 with the assistance of CeO2.


Sign in / Sign up

Export Citation Format

Share Document