Investigation of Growth Evolution in c-Axis SrBi2Nb2O9 Epitaxial Thin Films

1999 ◽  
Vol 574 ◽  
Author(s):  
J. Lettieri ◽  
M. A. Zurbuchen ◽  
G. W. Brown ◽  
Y. Jia ◽  
W. Tian ◽  
...  

Abstract(001)-oriented epitaxial SrBi2Nb2O9 thin films have been grown by pulsed laser deposition on (001) SrTiO3 and (001) LaAlO3—Sr2AlTaO6 substrates at optimized growth conditions. 4-circle x-ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy reveal highly oriented epitaxial films. Atomic force microscopy indicates spiral growth for films grown on SrTiO3 and layer-by-layer growth for films grown on LaAlO3—Sr2AlTaO6.

1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


2001 ◽  
Vol 688 ◽  
Author(s):  
J. Rodríguez Contreras ◽  
J. Schubert ◽  
U. Poppe ◽  
O. Trithaveesak ◽  
K. Szot ◽  
...  

AbstractWe have prepared single crystalline epitaxial PbZr0.52Ti0.48O3 (PZT) and BaTiO3 (BTO) thin films on single crystalline epitaxial SrRuO3 (SRO) thin films grown on SrTiO3 (100) (STO) substrates. PZT and SRO thin films were grown using high-pressure on-axis sputtering and BTO using pulsed laser deposition (PLD). The film thickness ranged between 12 to 165 nm. Their excellent structural properties, surface smoothness and interface sharpness were demonstrated by X-Ray Diffraction measurements (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Atomic Force Microscopy (AFM). Rutherford Backscattering Spectrometry and Channeling measurements (RBS/C) were used to analyze stoichiometry and crystalline quality. Ferroelectric hysteresis loops were obtained for all films of a thickness down to 12 nm showing a decrease in the remanent polarization Pr and an increase in the coercive field Ec towards thinner film thicknesses. Furthermore we have prepared tunneling junctions with a PZT or BTO barrier thickness of 3-6 nm. Reproducible bi-stable I-V-curves and bias dependence of the conductance were obtained suggesting an influence of the ferroelectric properties of the barrier material on the tunnel current.


2015 ◽  
Vol 821-823 ◽  
pp. 213-216
Author(s):  
S.M. Ryndya ◽  
N.I. Kargin ◽  
A.S. Gusev ◽  
E.P. Pavlova

Silicon carbide thin films were obtained on Si (100) and (111) substrates by means of vacuum laser ablation of α-SiC ceramic target. The influence of substrate temperature on composition, structure and surface morphology of experimental samples was examined using Rutherford backscattering spectrometry (RBS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), conventional and high-resolution transmission electron microscopy (TEM/HRTEM), atomic force microscopy (AFM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) methods.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2085
Author(s):  
Yogesh Sharma ◽  
Elizabeth Skoropata ◽  
Binod Paudel ◽  
Kyeong Tae Kang ◽  
Dmitry Yarotski ◽  
...  

We report on the growth of stoichiometric, single-crystal YCrO3 epitaxial thin films on (001) SrTiO3 substrates using pulsed laser deposition. X-ray diffraction and atomic force microscopy reveal that the films grew in a layer-by-layer fashion with excellent crystallinity and atomically smooth surfaces. Magnetization measurements demonstrate that the material is ferromagnetic below 144 K. The temperature dependence of dielectric permittivity shows a characteristic relaxor-ferroelectric behavior at TC = 375–408 K. A dielectric anomaly at the magnetic transition temperature indicates a close correlation between magnetic and electric order parameters in these multiferroic YCrO3 films. These findings provide guidance to synthesize rare-earth, chromite-based multifunctional heterostructures and build a foundation for future studies on the understanding of magnetoelectric effects in similar material systems.


1996 ◽  
Vol 441 ◽  
Author(s):  
P. Fons ◽  
S. Niki ◽  
A. Yamada ◽  
D. J. Tweet

AbstractDue to its high near bandedge absorption, CuInSe2 is considered to be one of the most promising solar cell materials. As CuInSe2 films are usually grown by metastable processes, the Cu/In ratio often deviates from the ideal ratio of unity. To investigate the structural and morphological changes induced by such stoichiometric variations we have grown a series of epitaxial CuInSe2 epitaxial thin films with varying Cu/In ratios by molecular beam epitaxy on GaAs(001) substrates from elemental sources at a growth temperature of 450° C. Overall structural, microstructural and surface morphological changes were observed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy, respectively. It was observed that as films deviated from stoichiometry, twinning occurred preferentially on the anion {1 · 1 · 2} planes.


2019 ◽  
Vol 286 ◽  
pp. 49-63
Author(s):  
Dwight Acosta ◽  
Francisco Hernández ◽  
Alejandra López-Suárez ◽  
Carlos Magaña

WO3:Mo and WO3:Ti thin films have been deposited on FTO/Glass substrates by the pulsed chemical spray technique at a substrate temperature of Ts= 450°C. The influence of Mo and Ti doping on the structural, electrical, and optical behavior of WO3thin films, has been studied by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Ultra Violet and Visible Spectrometry (UV-VIS), and Surface Conductivity Methods (Four Points). Doped WO3films presents similar polycrystalline structures but with noticeable modifications in surface configurations at micrometric and nanometric levels, as the Mo and Ti concentration is systematically increased in the starting sprayed solution. From processed High-Resolution Electron Micrographs (HREM), a low density of structural defects was found on pure and doped WO3grains. This lead to conclude that variations in films surface characteristics are mainly related with metallic doping concentrations which in turn, have noticeable influence in electrical and optical behaviors reported in this work.


2020 ◽  
Vol 1004 ◽  
pp. 414-420
Author(s):  
Junro Takahashi ◽  
Kotaro Kawaguchi ◽  
Kazuhiko Kusunoki ◽  
Tomoyuki Ueyama ◽  
Kazuhito Kamei

We have studied the microstructure of the growth surface of the 4H-SiC grown by the m-face solution growth. Atomic Force Microscopy (AFM) revealed the micro-striped morphology with the asperity of several nm in the band-like morphology region. The cross-sectional Transmission Electron Microscopy (XTEM) showed that the growth surface consisted of a bunch of nanofacets and vicinal surface. This peculiar morphology is totally different from that of conventional spiral growth on c-face, which can be closely related with the growth mechanism of the m-face solution growth.


1996 ◽  
Vol 436 ◽  
Author(s):  
Cengiz S. Ozkan ◽  
William D. Nix ◽  
Huajian Gao

AbstractHeteroepitaxial Si1-xGex. thin films deposited on silicon substrates exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. In these films, surface roughening can take place in the form of ridges which can be aligned along <100> or <110> directions, depending on the film thickness. In this paper, we investigate this anisotropic dependence of surface roughening and present an analysis of it. We have studied the surface roughening behaviour of 18% Ge and 22% Ge thin films subjected to controlled annealing experiments. Transmission electron microscopy and atomic force microscopy have been used to study the morphology and microstructure of the surface ridges and the dislocations that form during annealing.


2001 ◽  
Vol 696 ◽  
Author(s):  
Ravi Bathe ◽  
R.D. Vispute ◽  
Daniel Habersat ◽  
R. P. Sharma ◽  
T. Venkatesan ◽  
...  

AbstractWe have investigated the epitaxy, surfaces, interfaces, and defects in AlN thin films grown on SiC by pulsed laser deposition. The stress origin, evolution, and relaxation in these films is reported. The crystalline structure and surface morphology of the epitaxially grown AlN thin films on SiC (0001) substrates have been studied using x-ray diffraction (θ–2θ, ω, and Ψ scans) and atomic force microscopy, respectively. The defect analysis has been carried out by using Rutherford backscattering spectrometry and ion channeling technique. The films were grown at various substrate temperatures ranging from room temperature to 1100 °C. X-ray diffraction measurements show highly oriented AlN films when grown at temperatures of 750- 800 °C, and single crystals above 800 °C. The films grown in the temperature range of 950 °C to 1000 °C have been found to be highly strained, whereas the films grown above 1000 °C were found to be cracked along the crystallographic axes. The results of stress as a function of growth temperature, thermal mismatch, growth mode, and buffer layer thickness will be presented, and the implications of these results for wide band gap power electronics will be discussed.


2002 ◽  
Vol 16 (28n29) ◽  
pp. 4347-4351 ◽  
Author(s):  
H. PRESTING ◽  
J. KONLE ◽  
H. KIBBEL

Silicon solar cells with embedded germanium (Ge) layers deposited as 3-dimensional islands in the Stranski-Krastanov growth mode have been grown by molecular beam epitaxy (MBE) to enhance the efficiency of Si thin film solar cells. The Ge-layers increase the infrared absorption in the base of the cell to achieve higher photocurrent which should overcome the loss in the open circuit voltage due to incorporation of a smaller bandgap material in the heterostructure. Up to 75 layers of Ge, each about 8 monolayers (ML) thick, separated by Si-spacer layers (9-18nm) have been deposited at rather elevated temperatures (700°C) on a standard 10Ωcm p-type Si-substrate. Island densities of 1011 cm -2 have been achieved by use of antimony (Sb) as surfactant. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to characterize the growth of Ge-islands under variuos growth conditions. Photocurrent measurements exhibit a higher photo-response in the infrared regime but a lower open circuit voltage of the fabricated solar cells compared to a Si-reference cell.


Sign in / Sign up

Export Citation Format

Share Document