Energy behavior with magnetic field of negatively charged magnetoexcitons in quantum wells and heterojunctions

1999 ◽  
Vol 588 ◽  
Author(s):  
F. M. Munteanu ◽  
Y. Kim ◽  
C. H. Perry ◽  
D. G. Rickel ◽  
J. A. Simmons ◽  
...  

AbstractWe present the results of the magneto-photoluminescence measurements performed on modulation doped GaAs/AlGaAs heterostructures in high magnetic fields (up to 60T) and low temperatures (0.37−1.5K). With increasing magnetic field we observe the formation of the triplet and singlet states of negatively charged magneto-excitons (X−) in addition to the neutral exciton (X0). Their behavior with field strongly depends on the sample geometry. In the case of a modulation doped quantum well (QW) with a well-width of 200A, the and states cross at a magnetic field of about 40T, whereas for a modulation-doped single heterojunction (SHJ) these states show no crossing over the whole range of available fields.

1997 ◽  
Vol 11 (09) ◽  
pp. 1195-1207
Author(s):  
E. K. Takahashi ◽  
A. T. Lino ◽  
L. M. R. Scolfaro

Self-consistent calculations of the electronic structure of center n-δ-doped GaAs/Al x Ga 1-x As quantum wells under in-plane magnetic fields are presented. The field B is varied up to 20 Tesla for different quantum well widths L w and sheet donor concentrations N D . The magnetic field produces noticeable changes in the energy dispersions along an in-plane direction perpendicular to B. The effects of B are more pronounced for higher electronic subbands. It is found that the diamagnetic shifts increase with increasing L w and/or N D . Contrarily to what has been observed in modulation-doped quantum wells, in these δ-doped systems the electron energy dispersions keep the single conduction band minimum at the center of the Brillouin zone even for intense magnetic fields.


2004 ◽  
Vol 18 (27n29) ◽  
pp. 3813-3816 ◽  
Author(s):  
A. B. HENRIQUES ◽  
L. K. HANAMOTO ◽  
E. TER HAAR ◽  
E. ABRAMOF ◽  
A. Y. UETA ◽  
...  

The near band-edge polarized optical optical absortion spectra of EuTe at low temperatures and high magnetic fields were investigated. The samples were grown by MBE on BaF 2 substrates, and the thickness varied in the 0.18-2.0 μm range. At high magnetic fields, the well-known 4f7→4f65d(t2g) optical transition splits into two well resolved lines at σ+ and two lines for σ-. These lines can be described by localized transitions tunable by the d-f exchange interaction, with a quadratic dependence on the intensity of the external magnetic field. Comparative measurements of the magnetization and the optical absorption as a function temperature provides a further test of the model of a localized excitation extending over a few lattice sites.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3216-3219 ◽  
Author(s):  
T. SEKITANI ◽  
N. MIURA ◽  
M. NAITO

We report low-temperature magnetotransport in the normal state of the electron-doped superconductors, Nd 2-x Ce x CuO 4, Pr 2-x Ce x CuO 4, and La 2-x Ce x CuO 4, by suppressing the superconductivity with high magnetic fields. The normal state ρ-T curve shows an up-turn at low temperatures, which has a log T dependence with saturation at lowest temperatures. The up-turn is gradually suppressed with increasing magnetic field, resulting in negative magnetoresistance. We discuss these findings on the basis of the Kondo scattering originating from the magnetic moments of Cu 2+ ions.


2009 ◽  
Vol 23 (12n13) ◽  
pp. 2718-2722
Author(s):  
LESZEK BRYJA ◽  
ARKADIUSZ WÓJS ◽  
JAN MISIEWICZ ◽  
PAULINA PLOCHOCKA ◽  
MAREK POTEMSKI ◽  
...  

Positive trions in a quasi-two-dimensional hole gas confined in symmetric and asymmetric GaAs quantum wells are studied by a combination of polarization-resolved photoluminescence and transport measurements in high magnetic fields B (up to 23 T) and low temperatures (down to 30 mK). The experiments are accompanied by realistic numerical calculations. The whole family of trions (the singlet and a pair of triplets) are observed. The singlet-triplet crossing of Coulomb energies is found: hidden in symmetric and visible in asymmetric structures.


1990 ◽  
Vol 216 ◽  
Author(s):  
Kamakhya P. Ghatak ◽  
S. N. Biswas

ABSTRACTIn this paper we studied the thermoelectric power under classically large magnetic field (TPM) in quantum wells (QWs), quantum well wires (QWWS) and quantum dots (QDs) of Bi by formulating the respective electron dispersion laws. The TPM increases with increasing film thickness in an oscillatory manner in all the cases. The TPM in QD is greatest and the least for quantum wells respectively. The theoretical results are in agreement with the experimental observations as reported elsewhere.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3355-3359
Author(s):  
I. MIHUT ◽  
C. C. AGOSTA ◽  
C. H. MIELKE ◽  
M. TOKOMOTO

The magnetic breakdown effect can be seen by the growth of new frequencies in the quantum oscillations in clean metals as a function of magnetic field. We have studied the variation of the amplitudes in the quantum oscillations in the resistance (the Shubnikov-de Haas effect) as a function of angle in the quasi-two dimensional-organic conductor κ-(BEDT-TTF)2Cu(NCS)2. The measurements were made by means of a radio frequency (rf) tank circuit (~ 50 MHz) at very high magnetic fields(50T-60T) and low temperature(500 mK). The geometry of the rf excitation we used excited in-plane currents, and therefore we measured the in-plane resistivity. In contrast to conventional transport measurements that measure the inter-plane resistivity, the in-plane resistivity is dominated by the magnetic breakdown frequencies. As a result we measured much higher breakdown frequency amplitudes than conventional transport experiments. As is expected, the angular dependence of the Shubnikov-de Haas frequencies have a 1/cosθ behavior. This is due to the change of the cross sectional area of the tubular Fermi surface as the angle with respect to the magnetic field is changed. The amplitude of the oscillations changes due to the spin splitting factor which takes into account the ratio between the spin splitting and the energy spacing of the Landau levels which also has 1/cosθ behavior. We show that our data agree with the semi-classical theory (Lifshitz-Kosevich formula).


1999 ◽  
Author(s):  
J. M. Schrama ◽  
Eva J. Rzepniewski ◽  
Arzhang Ardavan ◽  
R. Edwards ◽  
A.-K. Klehe ◽  
...  

Author(s):  
I. Zolotarevskii

Purpose of work. To ascertain the causes of the abnormally large displacement of the martensitic point in steels and iron alloys in strong pulsed magnetic fields at low temperatures. Research methods. Generalization of experimental and theoretical investigations of the strong magnetic field influence on the martensitic transformation in steels and iron alloys, taking into account the magnetic state of austenite. The obtained results. The distributions of the martensitic point displacement ΔMS from the content of the main component - iron and the temperature of the martensitic γ → α- transformation beginning (martensitic point MS) in different experiments are obtained. It is shown that the obtained temperature dependence ΔMS(MS) in a strong magnetic field at low temperatures decomposes into two components, one of which correlates with the generalized Clapeyron-Clausius equations, and the other is opposite to it. In addition, it was found that steels and alloys with intense γ → α- transformation in a magnetic field contain at least 72.5% iron (wt), which at low temperatures in the fcc structure is antiferromagnetic. Scientific novelty. The anomalous temperature dependence of the distribution ΔMS(MS) in a strong magnetic field is explained on the basis of quantum representations of the magnetic interaction of atoms in the Fe-Ni system. This effect is associated with a number of other invar effects, in particular, with an abnormally large spontaneous and forced magnetostriction, a strong dependence of the resulting exchange integral on the interatomic distance. The point of view according to which in these alloys in a magnetic field γ → α- transformation occurs by the type of “magnetic first kind phase transformation” is substantiated. It is assumed that the nucleation of the martensitic phase in a magnetic field occurs in (at) local regions of γ- phase with disoriented atomic magnetic moments (with high compression and increased forced magnetostriction). Practical value. The information obtained in this work provides grounds for explaining the kinetic features of the transformation of austenite into martensite in steels and iron alloys.


Sign in / Sign up

Export Citation Format

Share Document