scholarly journals Dip-Coating of Calcium Hydroxyapatite on Titanium Alloy (ti-6ai-4v) and Stainless Steel (316L) Substrates

1999 ◽  
Vol 599 ◽  
Author(s):  
B. Mavis ◽  
A. C. Tas

AbstractTitanium alloy (Ti-6AI-4V) and stainless steel (316L) are two of the most commonly used materials in the manufacture of orthopaedic implants. To achieve better biocompatibility with bone, metal implants made of 316L or Ti-6Al-4V are often coated with calcium hydroxyapatite (HA) bioceramics. This paper is to describe a new dipping solution recipe used for HA coating. Sample characterization was performed by SEM and XRD.

2012 ◽  
Vol 04 (03) ◽  
pp. 184-188 ◽  
Author(s):  
Kean-Khoon Chew ◽  
Sharif Hussein Sharif Zein ◽  
Abdul Latif Ahmad

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 880
Author(s):  
Abdul Samad Khan ◽  
Muhammad Awais

Substitutions of ions into an apatitic lattice may result in antibacterial properties. In this study, magnesium (Mg)-, zinc (Zn)-, and silicon (Si)-substituted hydroxyapatite (HA) were synthesized using a microwave irradiation technique. Polyvinyl alcohol (PVA) was added during the synthesis of the substituted HA as a binding agent. The synthesized Mg-, Zn-, and Si-substituted HAs were then coated onto a 316L-grade stainless-steel substrate using low-cost electrophoretic deposition (EPD), thereby avoiding exposure to high temperatures. The deposited layer thickness was measured and the structural, phase and morphological analysis were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The bacterial adhesion of Staphylococcus aureus was characterized at 30 min, 2 h and 6 h. The results showed homogeneous, uniform thickness (50–70 µm) of the substrate. FTIR and XRD showed the characteristic spectral peaks of HA, where the presence of Mg, Zn and Si changed the spectral peak intensities. The Mg–HA coating showed the least bacterial adhesion at 30 min and 2 h. In contrast, the Si–HA coating showed the least adhesion at 6 h. EPD showed an effective way to get a uniform coating on bio-grade metal implants, where ionic-substituted HA appeared as alternative coating material compared to conventional HA and showed the least bacterial adhesion.


2021 ◽  
Vol 17 (5) ◽  
pp. 504-513
Author(s):  
Norhasiza Mat Jusoh ◽  
Arif Faddilah Mohd Noor ◽  
Suffian Mohamad Tajudin ◽  
Mohd Hadizie Din ◽  
Mohd Ezane Aziz ◽  
...  

Stainless steel and titanium alloys are common materials for orthopaedic implants. However there is a lack of information and studies on magnetic remanence of  implants used in clinical practice. The aims of this study are to investigate the composition and the presence of magnetic remanence for these two orthopaedic implant materials. These two factors may cause implant instability and heat problems as well as degradation of the images quality if the patients undergo magnetic resonance imaging (MRI) examination. The magnetic hysteresis loop and remanence status of stainless steel and titanium alloy orthopaedic implants were investigated with a vibrating sample magnetometer (VSM). Both samples of stainless steel and titanium alloy had been exposed to external magnetic fields up to 1 T (10000 G) and 1.4 T (14000 G), respectively. The compositions of these two orthopaedic implant materials were studied using a scanning electron microscope with energy dispersive X-ray analysis (SEM-EDX). The results of the study demonstrated that ferrous and nickel compositions in stainless steel alloy orthopaedic implants contributed to the residual magnetism, as shown in the hysteresis loop. The titanium alloy orthopaedic implant sample does not contain any ferromagnetic elements. After exposure to a magnetic field, the stainless steel values of retentivity, coercivity and magnetisation are significantly higher compared to those of the titanium alloy. The stainless steel orthopaedic implant sample demonstrates a typical hysteresis loop that suggests the existence of magnetic remanence. In contrast, the titanium alloy orthopaedic implant sample showed no significant remanence phenomenon. By considering the existence of magnetic remanence in the implant is important as potential effect on the MRI image quality.


2020 ◽  
Vol 1000 ◽  
pp. 69-81
Author(s):  
Nuzul Ficky Nuswantoro ◽  
Dian Juliadmi ◽  
Hidayatul Fajri ◽  
Menkher Manjas ◽  
Netti Suharti ◽  
...  

Hydroxyapatite (HA) is potentially used as a coating material for titanium alloys to improve their bioactivity and then enhancing the osseointegration characteristic of metal implants for orthopedic application. Electrophoretic Deposition (EPD), one of the coating methods that is widely applied for coating metal because of its simplicity and relatively low cost, is chosen for coating metal implants. HA coating layer quality can be controlled by adjusting applied voltages and coating time of the EPD process. However, the optimum voltage and exposing time has not yet been known for new type titanium implant such as Ti-12Cr and TNTZ. This work is, therefore, focusing on the effect of applied voltage and coating time on the mass growth, HA coating thickness, and surface coverage that can be produced on the surfaces of both alloys, and also on the conventional titanium alloy, Ti6Al4V, for comparison. The result of this work showed that there is a significant influence of the titanium alloy type on the HA layer performances. However, it is necessary to choose a suitable voltage and to expose time for producing a sufficient coating layer that meets the standard of orthopedic implants.


Author(s):  
P Shakti Prakash ◽  
S J Pawar ◽  
R P Tewari

Biocompatible metallic alloys (stainless steel, Ti-alloy, Co–Cr alloys, etc.) have been frequently used for various biomedical implants. Being biocompatible, complications like implant corrosion, body inflammation, organ pain, local infection, and cytotoxicity cannot be avoided. Hydroxyapatite, a common biomaterial, is used in the form of powders, coatings, and composites for biomedical applications. But poor adhesion, poor load-bearing capacity, high dissolution, poor wear resistance, natural fragility, etc. are the few hindrances in the use of hydroxyapatite coating over implants. Hence, there is a need to focus on the development of alternative biomaterials and their coatings for metallic (orthopedic, dental, metallic stents, pacemakers, etc.) implants. To avoid various complexities and to improve the biocompatibility of metal implants, the coating of forsterite and its composites are being used nowadays. Techniques like dip coating, plasma spraying, and electrophoretic deposition are employed for such coatings. In this paper, a review based on methods of preparation of forsterite has been done. For the preparation of forsterite powder, various studies have reported the sintering temperature range to be 800–1450 ℃ and the crystallite size from 10 nm to 100 µm. The forsterite and its composites coating over Ti-alloy and stainless steel have also been reported. This paper also compares the mechanical and biological properties of forsterite and hydroxyapatite. It has been observed that the mechanical properties (hardness, fracture toughness, Young’s modulus, and compressive strength), and biological properties (biocompatibility and bioactivity) of forsterite are favorable for the biomedical implant coating.


2019 ◽  
Vol 11 (0) ◽  
pp. 1-6 ◽  
Author(s):  
Andžela Šešok ◽  
Mindaugas Vaitiekūnas

Biodegradable materials are used in two key sectors of orthopaedics – to fabricate bone fixators and scaffolds for bone tissue regeneration. In case of osteosynthesis, fixators made from biodegradable materials disappear from the body after a certain time. So, a necessity of a one more operation for their removal is excluded. In the present study, the acromioclavicular joint osteosynthesis plates made of magnesium alloy (WE43), titanium alloy (Ti-6Al-7Nb) and stainless steel (316L) are compared utilizing the finite element analysis. The research showed that stresses in the magnesium alloy plate were lower, compared to the titanium alloy plate or the stainless steel plate. However, the tensile strength of magnesium is over 2 times lower, as compared to stainless steel and 5 times lower, than titanium alloys. Magnesium alloy is not suitable for manufacturing plates with low thickness (2 and 2.5 mm), because the stresses generated in them exceed the yield strength of the material.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Krzysztof Marycz ◽  
Justyna Krzak ◽  
Wiktor Urbański ◽  
Celina Pezowicz

The effect of synthesis way of TiO2coatings on biocompatibility of transplanted materials using anin vitroandin vivorat model was investigated. TiO2layers were synthesized by a nonaqueous sol-gel dip-coating method on stainless steel 316L substrates applying two different precursors and their combination. Morphology and topography of newly formed biomaterials were determined as well as chemical composition and elemental distribution of a surface samples.In vitrotests were conducted by adipose-derived mesenchymal stem cells cultured on TiO2coatings and stainless steel without coatings to assess the bioreactivity of obtained materials. A positive biological effect of TiO2/316L/1 coatings—based on titanium(IV) ethoxide—was found in bothin vitroandin vivomodels. The TiO2/316L/1 exhibited the highest roughness and the lowest titanium concentration in TiO2than TiO2/316L/2—based on titanium(IV) propoxide and TiO2/316L/3—based on both above-mentioned precursors. The proper fibroblast-like morphology and higher proliferation rate of cells cultured on TiO2/316L/1 were observed when compared to the other biomaterials. No inflammatory response in the bone surrounding implant covered by each of the obtained TiO2was present. Our results showed that improvement of routinely used stainless steel 316L with TiO2/316L/1 layer can stimulate beneficial biological response.


2012 ◽  
Vol 15 (3) ◽  
pp. 112-122
Author(s):  
Ali H. Ataiwi ◽  
◽  
Abdul Khaliq F. Hamood ◽  
Rana A. Majed ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document