Tensile Properties of B2-Type CoTi Intermetallic Compound

2000 ◽  
Vol 646 ◽  
Author(s):  
Y. Kaneno ◽  
T. Takasugi

ABSTRACTB2-type CoTi intermetallic compound that was hot-rolled and recrystallized was tensile-tested as functions of temperature and testing atmosphere. The tensile strength showed a peak at intermediate temperature (∼800K). The brittle-ductile transition (BDT) defined by tensile elongation took place at about 800K, above which large tensile elongation was observed. Corresponding to this transition, SEM fractography showed a change from cleavage-like pattern mixed with intergranular fracture pattern to large cross-sectional reduction, i.e. necking of the tensile specimen. Also, the observed mechanical properties were independent of heat-treatment procedures, indicating that retained vacancies did not affect the mechanical properties of CoTi intermetallic compound. However, the tensile elongation and UTS at room temperature were dependent on testing atmosphere, indicating that moisture-induced embrittlement occurred in CoTi intermetallic compound.

2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


2010 ◽  
Vol 654-656 ◽  
pp. 1255-1258 ◽  
Author(s):  
Dmitry Orlov ◽  
Rimma Lapovok ◽  
László S. Tóth ◽  
Ilana B. Timokhina ◽  
Peter D. Hodgson ◽  
...  

As-received hot-rolled 5.6 mm thick IF steel sheet was symmetrically/asymmetrically cold rolled at room temperature down to 1.9 mm. The asymmetric rolling was carried out in monotonic (an idle roll is always on the same side of the sheet) and reversal (the sheet was turned 180º around the rolling direction between passes) modes. Microstructure, texture and mechanical properties were analysed. The observed differences in structure and mechanical properties were modest, and therefore further investigation of the effects of other kinds of asymmetry is suggested.


2016 ◽  
Vol 849 ◽  
pp. 570-579
Author(s):  
Qiang Huang ◽  
Jin Xia Song ◽  
Qing Li ◽  
Wei Peng Ren ◽  
Xin Guang Guan ◽  
...  

The microstructures and mechanical properties of superalloy K465 under different heat treatment, including as as-cast, solution treatment and aging, were investigated. The results showed that γ' precipitates in as-cast condition exhibited two kinds of morphologies of fine regular cuboidal shape at dendritic arm and coarse irregular form in interdendritic region. MC carbides decomposed into M6C carbides partly after 1210°C/4h solution treatment. The high temperature stress-rupture life can be improved obviously with the increasing cooling rate. When cooling rate was lower than 70°C/min, the room temperature tensile elongation increased with cooling rate increasing. When cooling rate was higher than 90°C/min the room temperature tensile elongation decreased with cooling rate increasing. The proper cooling rate of 70oC/min~90oC/min is advantageous for the achievement of excellent comprehensive properties. When aging treatments continued the regularization of γ' resulted in the improvement of stress-rupture life and the reduction of tensile elongation. The mechanical property gap between the solution treatment and aging can be decreased with increasing cooling rate.


1996 ◽  
Vol 460 ◽  
Author(s):  
C. T. Liu ◽  
P. J. Maziasz ◽  
J. L. Wright

ABSTRACTThe objective of this study is to identify key microstructural parameters which control the mechanical properties of two-phase γ-TiAl alloys with lamellar structures. TiAl alloys with the base composition of Ti-47Al-2Cr-2Nb (at. %) were prepared by arc melting and drop casting, followed by hot extrusion at temperatures above the oc-transus temperature, Tα. The hot extruded materials were then heat treated at various temperatures above and below Tα in order to control microstructural features in these lamellar structures. The mechanical properties of these alloys were determined by tensile testing at temperatures to 1000° C. The tensile elongation at room temperature is strongly dependent on grain size, showing an increase in ductility with decreasing grain size. The strength at room and elevated temperatures is sensitive to interlamellar spacing, showing an increase in strength with decreasing lamellar spacing. Hall-Petch relationships hold well for the yield strength at room and elevated temperatures and for the tensile elongation at room temperature. Tensile elongations of about 5% and yield strengths around 900 MPa are achieved by controlling both colony size and interlamellar spacing. The mechanical properties of the TiAl alloys with controlled lamellar structures produced directly by hot extrusion are much superior to those produced by conventional thermomechanical treatments.


2011 ◽  
Vol 236-238 ◽  
pp. 1939-1944
Author(s):  
Pei Qing La ◽  
Xin Guo ◽  
Yang Yang ◽  
Chun Jie Cheng ◽  
Xue Feng Lu ◽  
...  

Microstructure and mechanical properties of bulk nanocrystalline Fe3Al based alloy with 10 wt. % Mn prepared by aluminothermic reaction after annealing at 600, 800 and 1000°C for 8 h were investigated in order to gain insights in effects of annealing. Crystal structure of the alloy did not change and a fiber phase with enriched Mn appeared in the annealed alloy. Grain size of the alloy changed a little after annealing at 600°C but increased a lot after annealing at 800 and 1000°C. The annealed alloy had plasticity in compression at room temperature and the alloy annealed at 1000°C had yield strength of 782 MPa. The alloy without annealing has creep properties in compression at 800 and 1000°C and can be easily hot rolled to strip and sheet.


2014 ◽  
Vol 788 ◽  
pp. 406-413 ◽  
Author(s):  
Yun Zhou ◽  
Xue Min Wang ◽  
Xin Lai He

Multiphase steels were obtained by using Gleeble-1500 simulator and TMCP, and were characterized by optical microscopy, SEM, TEM, EBSD (electron back-scattered diffraction) and other tests to investigate its microstructure and mechanical properties. During the simulation, the deformation temperature is 850°C, and the steels are air cooled to 750-600°C and then quenched to room temperature. The results indicate that the microstructure of the specimen is composed of ferrite and bainite. With the lowering of quenching temperature, the proportion of ferrite increases and the proportion of bainite decreases, and the bainite laths is shorter. The fine (Nb, Ti) C particles and dislocations appear in ferrite and lath bainite, and the amount of high angle grain boundary decrease after the initial increasing. The microaolloyed hot-rolled multiphase steel plate was developed by two-stage rolling, subsequently quenching to room temperature or air cooling to 600°C, then quenching to room temperature. Two typical microstructures: acicular ferrite and ferrite-bainite multiphase were obtained. The ferrite-bainite multiphase steel showed better mechanical properties, and the yield strength, tensile strength, yield ratio, uniform elongation and percentage elongation were 488Mpa, 845Mpa, 0.58, 10.3% and 21% respectively. The refinement of bainite structures, fine (Nb, Ti) C particles and the dislocations in bainite increase the strength.


2016 ◽  
Vol 258 ◽  
pp. 635-638 ◽  
Author(s):  
Michal Junek ◽  
Marie Svobodová ◽  
Jiří Janovec ◽  
Jakub Horváth

This article deals with the results of mechanical testing and structural analysis of sections of narrow gap orbital welded P91 steel on tube OD 355.6 x 40 mm. The evaluation of mechanical properties was based on tensile test at room temperature on mini-tensile specimens and on measurement of modulus of elasticity. Weld was cut longitudinally into 9 narrow slices by using waterjet. From these slices 108 flat mini-tensile specimens (dimensions of gauge is 2 x 2 mm) were prepared. In experimental part microstructure evaluation and documentation of fracture surface of each mini-tensile specimen were carried out. The aim of these experiments was to assess the mechanical properties of the individual sections of the weld (base metal, heat affected zone and weld metal). These data can be used for new approaches of FEM modelling of welds considering heat affected zone like a combination of different materials with different mechanical properties, which connect the thermally unaffected base metal and weld metal.


2009 ◽  
Vol 475 (1-2) ◽  
pp. 126-130 ◽  
Author(s):  
S.M. Fatemi-Varzaneh ◽  
A. Zarei-Hanzaki ◽  
M. Haghshenas

2009 ◽  
Vol 610-613 ◽  
pp. 765-770 ◽  
Author(s):  
Zhi Wen Zou ◽  
Shou Mei Xiong

In present work, trace elements Sr and Nd were added into AZ91-1wt%Si alloys. The alloys were cast into a permanent mould and then machined into test bars. The microstructure and mechanical properties at room temperature of the specimens were investigated. Results showed that complicated Chinese script Mg2Si phase decreased in size with the increase of Sr addition. When Sr addition increased to 0.1wt%, the Mg2Si phase was changed from Chinese script shape into uniform polygon shape completely. At the same time, mechanical properties improved due to the morphology modification of the Mg2Si phase. An intermetallic compound containing Mg, Al, Nd and Si was found when Nd was added to the alloy. Remarkable modification on the shape and distribution of the Mg2Si phase was observed because of the intermetallic compound, which leads to a great change in mechanical properties. The grain refinement mechanism of Sr and Nd elements on the Mg2Si phase was discussed.


Sign in / Sign up

Export Citation Format

Share Document