Mechanical Properties of γ-TiAl Based Alloys at Elevated Temperatures

2000 ◽  
Vol 646 ◽  
Author(s):  
M. Weller ◽  
A. Chatterjee ◽  
G. Haneczok ◽  
F. Appel ◽  
H. Clemens

ABSTRACTMechanical loss (internal friction) and creep experiments were carried out on specimens of a Ti-46.5at.%Al-4at.%(Cr,Nb,Ta,B) alloy with differently spaced fully lamellar microstructures. The creep tests were performed in a temperature range of 970 K to 1070 K at 175 MPa. For the mechanical loss measurements a low frequency subresonance torsion apparatus was applied, operating in the frequency range of 0.01 Hz to 10 Hz. The mechanical spectra show two phenomena: (i) A loss peak of Debye-type at 900 K (0.01 Hz) which is controlled by an activation enthalpy of 3.0 eV. The loss peak is related to thermally activated (reversible) motion of dislocation segments which are pinned at the lamellae interface and within gamma lamellae. (ii) A viscoelastic high temperature background above 1000 K with an activation enthalpy of 3.8 eV. This value agrees well with the activation enthalpy of 3.6 eV from creep experiments. Both high temperature background as well as creep are assigned to diffusion controlled climb of dislocations.


2001 ◽  
Vol 687 ◽  
Author(s):  
H.-S. Moon ◽  
L. Anand ◽  
S. M. Spearing

AbstractSilicon in single crystal form has been the material of choice for the first demonstration of the MIT microengine project. However, because it has a relatively low melting temperature, silicon is not an ideal material for the intended operational environment of high temperature and stress. In addition, preliminary work indicates that single crystal silicon has a tendency to undergo localized deformation by slip band formation. Thus it is critical to obtain a better understanding of the mechanical behavior of this material at elevated temperatures in order to properly exploit its capabilities as a structural material. Creep tests in simple compression with n-type single crystal silicon, with low initial dislocation density, were conducted over a temperature range of 900 K to 1200 K and a stress range of 10 MPa to 120 MPa. The compression specimens were machined such that the multi-slip <100> or <111> orientations were coincident with the compression axis. The creep tests reveal that response can be delineated into two broad regimes: (a) in the first regime rapid dislocation multiplication is responsible for accelerating creep rates, and (b) in the second regime an increasing resistance to dislocation motion is responsible for the decelerating creep rates, as is typically observed for creep in metals. An isotropic elasto-viscoplastic constitutive model that accounts for these two mechanisms has been developed in support of the design of the high temperature turbine structure of the MIT microengine.



2013 ◽  
Vol 592-593 ◽  
pp. 71-74
Author(s):  
Zuzana Zdražilová ◽  
Zuzanka Trojanová ◽  
Kristián Máthis ◽  
Pavel Lukáč

AS21 magnesium alloy (2.1Al-1Si-balance Mg in wt.%) and the alloy reinforced with short δ-Al2O3fibres (Saffil®) were deformed in compression at temperatures between 23 and 300 °C. Stress relaxation tests were performed in order to reveal features of the thermally activated dislocation motion. Internal and effective components of the applied stress have been estimated. The activation volume decreases with increasing effective stress. The values of the activation volume and the activation enthalpy indicate that the main thermally activated process in the alloy as well as in the composite is the dislocation motion in non-compact planes.



Author(s):  
Daejong Kim ◽  
Changheui Jang ◽  
Woo Seog Ryu

Creep behavior and degradation of creep properties of high-temperature materials often limit the lives of components and structures designed to operate for extended period under stress at elevated temperatures. A nickel-base superalloy, Alloy 617 in particular which is considered as a prospective material for hot gas duct and intermediate heat exchanger in very high temperature gas cooled reactor, was studied for creep properties. Creep tests were carried out under various sustained tensile loadings in air and helium environments at temperature of 800°C, 900°C, and 1000°C. Times for 1% creep strain and creep rupture were taken from the short-term creep tests within 1000 hours. Effect of creep-environment interaction on creep strain and changes in viscous deformation properties by dynamic recrystallization were discussed.



2005 ◽  
Vol 488-489 ◽  
pp. 845-848 ◽  
Author(s):  
Yeon Jun Chung ◽  
Jung Lae Park ◽  
Nack J. Kim ◽  
Kwang Seon Shin

The effects of alloying elements on the microstructure and high temperature mechanical properties of Mg-Al alloys were investigated in this study. In order to improve the high temperature mechanical properties, Sr or Mm was added to the Mg-9Al alloy. The effect of Sn on the Mg-9Al alloy was also examined since Sn was expected to improve the high temperature mechanical properties by forming the thermally stable Mg2Sn phase. The specimens used in this study were produced on a 320 ton cold chamber high-pressure die casting machine. The microstructures of the specimens were examined by optical and scanning electron microscopy and tensile and creep tests were performed at elevated temperatures. Tensile tests were carried out at room temperature, 150oC and 200oC using an initial strain rate of 2×10-4/sec. In addition, tensile creep tests were conducted at the stress levels of 50 MPa and 70 MPa. From the microstructure analyses of the specimens after heat treatment at 400oC for 12 hours, it was found that most of the Mg17Al12 precipitate dissolved into the matrix, while the thermally stable phases continued to exist. The high temperature mechanical properties of the Mg-9Al alloys were found to improve significantly with the additions of Sr, Mm and Sn, due to the formation of the thermally stable precipitates.



2004 ◽  
Vol 842 ◽  
Author(s):  
M. Weller ◽  
H. Clemens ◽  
G. Dehm ◽  
G. Haneczok ◽  
S. Bystrzanowski ◽  
...  

ABSTRACTAn intermetallic Ti-46Al-9Nb (at%) alloy with different microstructures (near gamma, duplex, and fully lamellar) was studied by internal friction measurements at 300 K to 1280 K using different frequency ranges: (I) 0.01 Hz to 10 Hz and (II) around 2 kHz. The loss spectra in range I show (i) a loss peak of Debye type at T ≈ 1000 K which is only present in duplex and fully lamellar samples; (ii) a high-temperature damping background above ≈ 1100 K. The activation enthalpies determined from the frequency shift are H = 2.9 eV for the loss peak and H = 4.1–4.3 eV for the high-temperature damping background. The activation enthalpies for the visco-elastic high-temperature damping background agree well with values obtained from creep experiments and are in the range of those determined for self-diffusion of Al in TiAl. These results indicate that both properties (high-temperature damping background and creep) are controlled by volume diffusion-assisted climb of dislocations. The loss peak is assigned to diffusion-controlled local glide of dislocation segments which, as indicated by transmission electron microscopy observations, are pinned at lamella interfaces.



Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.



Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.



Alloy Digest ◽  
2005 ◽  
Vol 54 (12) ◽  

Abstract Wieland K-88 is a copper alloy with very high electrical and thermal conductivity, good strength, and excellent stress relaxation resistance at elevated temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-738. Producer or source: Wieland Metals Inc.



Alloy Digest ◽  
1956 ◽  
Vol 5 (7) ◽  

Abstract DOWMETAL HZ32XA is a magnesium-thorium-zinc-zirconium alloy having good high temperature creep resistance, and is recommended for applications at elevated temperatures. It is used in the artificially aged condition (T5). This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: Mg-26. Producer or source: The Dow Chemical Company.



Alloy Digest ◽  
1972 ◽  
Vol 21 (7) ◽  

Abstract UDIMET 105 is a nickel-base alloy which was developed for service at elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-175. Producer or source: Special Metals Corporation.



Sign in / Sign up

Export Citation Format

Share Document