Dielectric and Piezoelectric Properties of PZT 52/48 Thick Films with (100) and Random Crystallorgraphic Orientation

2000 ◽  
Vol 655 ◽  
Author(s):  
Q. F. Zhou ◽  
E. Hong ◽  
R. Wolf ◽  
S. Trolier-McKinstry

AbstractFerroelectric Pb(Zr1划xTix)O3 (PZT) films have been extensively studied for active components in microelectromechanical systems. The properties of PZT films depend on many parameters, including composition, orientation, film thickness and microstructure. In this study, the effects of crystallographic orientation on the dielectric and transverse piezoelectric properties of Pb(Zr0.52Ti0.48)O3 (PZT 52/48) films are reported. Crack free random and highly (100) oriented PZT(52/48) films up to ∼ 7 μm thick were deposited using a sol-gel process on Pt (111)/Ti/SiO2/Si and Pt(100)/SiO2/Si substrates, respectively. The dielectric permittivity (at 1kHz) for the (100) oriented films was 980-1000, and for the random films ∼ 930-950. In both cases, tanä was less than 0.03. The remanent polarization (∼ 30 μC/cm2) of random PZT films was larger than that of (100) oriented PZT films. The transverse piezoelectric coefficient (d31(eff)) of PZT films was measured by the wafer flexure method. The d31(eff) coefficient of random PZT thick films (-80pC/N) was larger than that of (100) oriented films (-60pC/N) when poled at 80 kV/cm for 15 min.

2005 ◽  
Vol 20 (6) ◽  
pp. 1428-1435 ◽  
Author(s):  
J. Pérez ◽  
P.M. Vilarinho ◽  
A.L. Kholkin ◽  
J. Manuel Herrero ◽  
C. Zaldo

Lead zirconate titanate (PZT) films of composition close to the morphotropic phase boundary were deposited onto standard Si/SiO2/Ti/Pt substrates using a modified sol-gel process. The preparation conditions were optimized to obtain high-quality films at sufficiently low temperature (Ta - 500 °C). The dielectric, ferroelectric, and piezoelectric properties of the films were then measured as a function of the annealing temperature and the number of distillations to evaluate their suitability for micromechanical applications. The maximum values of the longitudinal charge and voltage piezoelectric coefficients were d33 ∼ 65 pm/V and g33 ∼ 4 × 10−3 Vm/N, respectively. The results indicate that the piezoelectric properties improved and became saturated with increasing number of distillations and are almost independent on Ta. Only moderate decrease of the piezoelectric response with frequency suggests that the investigated PZT films can be used in high-frequency piezoelectric applications. The results are discussed in terms of the microstructure and interface effects on the piezoelectric deformation in ferroelectric thin films.


2001 ◽  
Vol 260 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Xiaorong Fu ◽  
Zhitang Song ◽  
Chenglu Lin ◽  
Helen. L. W. Chan ◽  
Chung-Loong Choy

2007 ◽  
Vol 1034 ◽  
Author(s):  
Serguei A. Chevtchenko ◽  
Francisco A. Agra ◽  
Jinqiao Xie ◽  
Hadis Morkoç

AbstractWe provide a comparative study of the piezoresponse in thin Pb(ZrxTi1−x)O3 (PZT) films deposited onto GaN/sapphire and Pt/Ti/SiO2/Si substrates using the sol-gel process. The effective piezoelectric coefficient was measured by Piezoresponse Force Microscopy. The resulting effective piezoelectric coefficient obtained for PZT(∼180 nm)/GaN/sapphire structure is 16.7 ± 3.4 pm/V and for PZT(∼180 nm)/Pt/Ti/SiO2/Si structure is 7.8 ± 0.8 pm/V. We also discuss the substrate clamping effect of both structures and explain the relatively stronger piezoresponse of PZT on GaN by different orientation of films formed on the two types of substrates. In this investigation, the PZT thin films crystallized with preferred (100) and (110) orientations on platinum and GaN, respectively. The phase mode of the Piezoresponse Force Microscopy was used to demonstrate remanent polarization in PZT/GaN/sapphire structure.


2002 ◽  
Vol 748 ◽  
Author(s):  
C. L. Zhao ◽  
Z. H. Wang ◽  
W. Zhu ◽  
O. K. Tan ◽  
H. H. Hng

ABSTRACTLead zirconate titanate (PZT) films are promising for acoustic micro-devices applications because of their extremely high electromechanical coupling coefficients and excellent piezoelectric response. Thicker PZT films are crucial for these acoustic applications. A hybrid sol-gel technology has been developed as a new approach to realize simple and cost-effective fabrication of high quality PZT thick films. In this paper, PZT53/47 thick films with a thickness of 5–50 μm are successfully deposited on Pt-coated silicon wafer by using the hybrid sol-gel technology. The obtained PZT thick films are dense, crack-free, and have a nano-sized microstructure. The processing parameters of this technology have been evaluated. The microstructure of the film has been observed using field-emission scanning electron microscopy and the crystallization process has been monitored by the X-ray diffraction. The thick films thus made are good candidates for fabrication of piezoelectric diaphragm which will be an essential element of microspeaker and microphone arrays.


1994 ◽  
Vol 360 ◽  
Author(s):  
D.A. Barrow ◽  
T.E. Petroff ◽  
M. Sayer

AbstractLead zirconate titanate (PZT) films of up to 60 μm in thickness have been fabricated on a wide variety of substrates using a new sol gel process. The dielectric properties (∈ = 900), ferroelectric (Ec = 16 kV/cm and Pr = 35 μC/cm 2) and piezoelectric properties are comparable to bulk values. The characteristic Curie point of these films is at 420 °C. Piezoelectric actuators have been developed by depositing thick PZT films on both planar and coaxial substrates. Stainless steel cantilevers and optical fibres coated with a PZT film exhibit flexure mode resonant vibrations observable with the naked eye. A low frequency in-line fibre optic modulator has been developed using a PZT coated optical fibre. The high frequency resonance of a 60 μm film on a aluminum substrate has been observed.


2014 ◽  
Vol 703 ◽  
pp. 51-55
Author(s):  
Jia Zeng ◽  
Ming Hua Tang ◽  
Zhen Hua Tang ◽  
Yong Guang Xiao ◽  
Long Peng ◽  
...  

Bi0.94Ce0.06Fe0.97Ti0.03O3 and Bi0.94Ce0.06Fe0.97Ti0.03O3/Bi3.15Nd0.85Ti3O12 double-layered thin films were fabricated via sol-gel process on Pt/Ti/SiO2/Si substrates. The influence of Bi3.15Nd0.85Ti3O12 buffer layer on microstructure and electrical properties of Bi0.94Ce0.06Fe0.97Ti0.03O3 thin films were investigated in detail. Well-saturated P-E hysteresis loops can be obtained in Bi0.94Ce0.06Fe0.97Ti0.03O3 films with Bi3.15Nd0.85Ti3O12 buffer. The remnant polarization (2Pr) of the double-layered thin films is 112 μC/cm2. The coercive field (2Ec) of double-layered films is 672 kV/cm, which is much lower than that of the Bi0.94Ce0.06Fe0.97Ti0.03O3 thin films. The leakage current density of Bi0.94Ce0.06Fe0.97Ti0.03O3/Bi3.15Nd0.85Ti3O12 double-layered thin films is 4.12×10-5 A/cm2.


2001 ◽  
Vol 260 (1) ◽  
pp. 231-236 ◽  
Author(s):  
Qifa Zhou ◽  
Qingqi Zhang ◽  
Helen Lai Wah Chan ◽  
Chung Loong Choy

2015 ◽  
Vol 484 (1) ◽  
pp. 43-48 ◽  
Author(s):  
D. Seregin ◽  
K. Vorotilov ◽  
A. Sigov ◽  
N. Kotova
Keyword(s):  
Sol Gel ◽  

Sign in / Sign up

Export Citation Format

Share Document