Fabrication of MEMS Components Based on Ultrananocrystalline Diamond Thin Films and Characterization of Mechanical Properties

2000 ◽  
Vol 657 ◽  
Author(s):  
A. V. Sumant ◽  
O. Auciello ◽  
A. R. Krauss ◽  
D. M. Gruen ◽  
D. Ersoy ◽  
...  

ABSTRACTThe mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of MEMS components. However, conventional CVD diamond deposition methods result in either a coarse-grained pure diamond structure that prevents high- resolution patterning, or in a fine-grained diamond film with a significant amount of intergranular non-diamond carbon. At Argonne National Laboratory, we are able to produce phase-pure ultrananocrystalline diamond (UNCD) films for the fabrication of MEMS components. UNCD is grown by microwave plasma CVD using C60-Ar or CH4-Ar plasmas, resulting in films that have 3-5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, and can have mechanical properties similar to that of single crystal diamond. We used lithographic patterning, lift-off, and etching, in conjunction with the capability for growing UNCD on SiO2 to fabricate 2-D and 3-D UNCD-MEMS structures. We have performed initial characterization of mechanical properties by using nanoindentation and in-situ TEM indentor techniques. The values of Hardness (∼88 GPa) and Young's modulus (∼ 864 GPa) measured are very close to those of single crystal diamond (100 GPa and 1000 GPa respectively). The results show that UNCD is a promising material for future high performance MEMS devices.

1999 ◽  
Vol 605 ◽  
Author(s):  
O. Auciello ◽  
A.R. Krauss ◽  
D.M. Gruen ◽  
E.M. Meyer ◽  
H.G. Busmann ◽  
...  

AbstractSilicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or SiO2 layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using C60-Ar or CH4-Ar gas mixtures, which result in films that have 3-5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond.


CrystEngComm ◽  
2022 ◽  
Author(s):  
Wei Cao ◽  
Zhibin Ma ◽  
Hongyang Zhao ◽  
Deng Gao ◽  
Qiuming Fu

On a semi-open holder, the homoepitaxial lateral growth of single-crystal diamond (SCD) was carried out via microwave plasma chemical vapor deposition (MPCVD). By tuning and optimizing two different structures of...


2021 ◽  
Author(s):  
Lianmin Yin ◽  
Yifan Dai ◽  
Hao Hu

Abstract In order to obtain ultra-smooth surfaces of single-crystal silicon in ultra-precision machining, an accurate study of the deformation mechanism, mechanical properties, and the effect of oxide film under load is required. The mechanical properties of single-crystal silicon and the phase transition after nanoindentation experiments are investigated by nanoindentation and Raman spectroscopy, respectively. It is found that pop-in events appear in the theoretical elastic domain of single-crystal silicon due to the presence of oxide films, which directly leads the single crystal silicon from the elastic deformation zone into the plastic deformation zone. In addition, the mechanical properties of single-crystal silicon are more accurately measured after it has entered the full plastic deformation.


2012 ◽  
Vol 14 (5) ◽  
pp. 053011 ◽  
Author(s):  
F Picollo ◽  
D Gatto Monticone ◽  
P Olivero ◽  
B A Fairchild ◽  
S Rubanov ◽  
...  

2004 ◽  
Vol 84 (15) ◽  
pp. 2754-2756 ◽  
Author(s):  
E. Gu ◽  
H. W. Choi ◽  
C. Liu ◽  
C. Griffin ◽  
J. M. Girkin ◽  
...  

2008 ◽  
Vol 3 (12) ◽  
pp. P12002-P12002 ◽  
Author(s):  
M Mathes ◽  
M Cristinziani ◽  
H Kagan ◽  
S Smith ◽  
W Trischuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document