Behavior of High Performance Concrete Under High Temperature (60-450°C) for Surface Long-Term Storage: Thermo-Hydro-Mechanical Residual Properties

2000 ◽  
Vol 663 ◽  
Author(s):  
C. Gallé ◽  
J. Sercombe ◽  
M. Pin ◽  
G. Arcier ◽  
P. Bouniol

ABSTRACTAfter various thermal treatments (up to 450°C), residual thermo-hydro-mechanical (T-H-M) properties of two OPC high performance concretes (HPC) were analyzed in the context of surface long-term storage. Materials were prepared with silico-calcareous aggregates (standard HPC) and hematite aggregates (heavy HPC). The initial microstructural (porosity ≈10%) and transport (gas permeability ≈10-19 m2) properties are similar for both concretes. As far as the mechanical aspect is concerned, heavy HPC shows a higher compressive strength and elastic modulus than standard HPC (78 and 63 MPa, 81 and 49 GPa, respectively). Heavy HPC is also characterized by a higher thermal conductivity (7.3 W m-1 K-1 compared to 2.7 W m-1 K-1 for standard concrete). Results analysis show that thermo-hydro-mechanical damages are smaller for heavy HPC. Between 60 and 250°C, the elastic modulus and the compressive strength of standard HPC decrease by 40% and 16%, respectively. For heavy HPC, these parameters respectively decrease by 10% and 4%. A similar trend was observed for thermal conductivity evolution. Gas permeability and porosity data confirm the good behavior of heavy HPC. As a conclusion, hematite HPC seems to provide more interesting T-H-M residual properties than standard HPC. Limited thermal expansion and thermal gradients induced by hematite are probably responsible of this behavior.

2019 ◽  
Vol 292 ◽  
pp. 108-113 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Roman Chylík ◽  
Zdeněk Prošek

The paper describes an experimental program focused on the research of high performance concrete with partial replacement of cement by fly ash. Four mixtures were investigated: reference mixture and mixtures with 10 %, 20 % and 30 % cement weight replaced by fly ash. In the first stage, the effect of cement replacement was observed. The second phase aimed at the influence of homogenization process for the selected 30% replacement on concrete properties. The analysis of macroscopic properties followed compressive strength, elastic modulus and depth of penetration of water under pressure. Microscopic analysis concentrated on the study of elastic modulus, porosity and mineralogical composition of cement matrix using scanning electron microscopy, spectral analysis and nanoindentation. The macroscopic results showed that the replacement of cement by fly ash notably improved compressive strength of concrete and significantly decreased the depth of penetration of water under pressure, while the improvement rate increased with increasing cement replacement (strength improved by 18 %, depth of penetration by 95 % at 30% replacement). Static elastic modulus was practically unaffected. Microscopic investigation showed impact of fly ash on both structure and phase mechanical performance of the material.


Author(s):  
Sung-Gul Hong ◽  
Namhee K. Hong ◽  
In-Young Gu

<p>This paper investigates the thermal resistance of ultra-high performance concrete (UHPC) composites using different fillers of low thermal conductivity. The development of new concrete for energy saving facilities is more demanding for climate change threat to human. The use of UHPC composite with expanded polystyrene (EPS) beads as well as different fillers of low thermal conductivity has shown a viable option of architectural sandwich walls of insulation. The optimum fillers of thermal resistance for UHPC are determined by the tradeoff of compressive strength between heat conductivity. Better thermal properties of some UHPC composites make lower compressive strength of UHPC. To evaluate the varying thermal and mechanical characteristics of UHPC composites with the quantity of fillers, the method of volumetric substitution for UHPC was investigated in this paper. The UHPC composite of thermal resistance with comparable compressive strength can be possibly used for concrete blocks to transfer flexural compression force in efficient thermal breaker systems. Test results show that the strength of the concrete is greatly influenced by the curing method and the most important factors affecting the strength of concrete are curing temperature and curing time. Structural UHPC walls of thermal resistance serve as both load transfer and barrier to external temperature. To investigate the mechanical behavior of composite sandwich panels, the panels for the study are fabricated by new concrete as core and face sheets and the influence of the three components – the mechanical properties of the core material, the strength of the face sheet material, and the bond strength adhesive material – was evaluated. The flexural capacity of the specimens UHPC with EPS core showed high strength in a stable linear behavior before core cracking.</p>


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1829
Author(s):  
Gang Ling ◽  
Zhonghe Shui ◽  
Xu Gao ◽  
Tao Sun ◽  
Rui Yu ◽  
...  

In this research, iron ore tailing (IOT) is utilized as the cementitious material to develop an eco-friendly ultra-high performance concrete (UHPC). The UHPC mix is obtained according to the modified Andreasen and Andersen (MAA) packing model, and the applied dosage of IOT is 10%, 20%, and 30% (by weight), respectively. The calculated packing density of different mixtures is consistent with each other. Afterwards, the fresh and hardened performance of UHPC mixtures with IOT are evaluated. The results demonstrate that the workability of designed UHPC mixtures is increased with the incorporation of IOT. The heat flow at an early age of designed UHPC with IOT is attenuated, the compressive strength and auto shrinkage at an early age are consequently reduced. The addition of IOT promotes the development of long-term compressive strength and optimization of the pore structure, thus the durability of designed UHPC is still guaranteed. In addition, the ecological estimate results show that the utilization of IOT for the UHPC design can reduce the carbon emission significantly.


2013 ◽  
Vol 438-439 ◽  
pp. 249-252 ◽  
Author(s):  
Zhe Jin ◽  
Cheng Ya Wang

An experimental study has been conducted to investigate the effect of the fraction of PVA fiber on the mechanical properties of high-performance concrete. The mechanical properties include compressive strength, splitting tensile strength and compressive elastic modulus. On the basis of the experimental results of the specimens of six sets of mix proportions, the mechanism of PVA fiber acting on these mechanical properties has been analyzed in details. The results indicate that there is a tendency of increase in the compressive strength and splitting tensile strength when the fiber volume fraction is below 0.08%, and the compressive elastic modulus of high-performance concrete decreases gradually with the increasing volume fraction of PVA fiber with appropriate content.


2008 ◽  
Vol 385-387 ◽  
pp. 701-704 ◽  
Author(s):  
Jung Jun Park ◽  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Sung Wook Kim

Silica fume constitutes an element of extreme importance in improving the strength and fluidity of UHPC. The adopted amount of silica fume generally is generally exceeding 25% of cement in weight but the influence of this amount on the properties of UHPC is still remaining as a domain to be investigated. Accordingly, this paper investigates the effects of the amount of silica fume on the mechanical characteristics of the fluidity, compressive strength, elastic modulus and flexural strength and on the micro structure of UHPC by means of SEM and MIP. Results revealed that adequate amount of silica fume is improving the fluidity and strength. MIP tests demonstrated that such improvement is brought by the increase of hydrates due to the pozzolan reaction and the effective densification inside concrete due to the filler. It seemed also that similar mechanical characteristics can be obtained for a volumetric ratio to cement ranging between 10 and 25%.


2019 ◽  
Vol 7 (1) ◽  
pp. 372-380 ◽  
Author(s):  
Xuezhi Sun ◽  
Yongxin Lu ◽  
Tongtong Li ◽  
Shuaishuai Zhao ◽  
Zhida Gao ◽  
...  

A CoO based supercapacitor with high capacity and long-term storage stability is enabled by combining metallic Co-doping and a carbon shell.


2013 ◽  
Vol 357-360 ◽  
pp. 834-838
Author(s):  
Yu Jiang Wang ◽  
Qian Tian ◽  
Jia Ping Liu

Effect of plastic stage curing on long-term properties of high performance concrete (HPC) was studied, thereafter, the mechanism is also analyzed. Results showed that compared to compressive strength, the permeability of surface concrete (especially for silica fume concrete) was more sensitive to plastic stage curing, and deteriorations due to insufficient plastic stage curing cant be eliminated by later longer time of wet curing. Furthermore, the deterioration of pore structure and formation of microcracks were main reasons for insufficient plastic stage curing that affected properties of concrete.


2014 ◽  
Vol 711 ◽  
pp. 406-409 ◽  
Author(s):  
Feng Chi Wang ◽  
He Gong ◽  
Shi Long Jia ◽  
Bei Chuan Zhang ◽  
Chao Fan Zhang

Glass has the characteristics of biologically incapable of breaking down, corrosion resistant, suitable for long term storage and use. It has resistance of acid, alkali and salt and stable property. The hardness of the natural stone with the glass is very close , therefore, the waste glass as fine aggregate instead of natural sand to produce concrete is feasible. This paper use ordinary concrete C30 as the research object normal concrete using mixed glass method design, in accordance with the percentage of 0, 50, 100 instead of sand. Three sections and eighteen waste glass aggregate concrete specimens were produced for the cube concrete compressive strength and the axial compressive strength experiments. Through the analysis of experimental data, it suggested that the ratio of glass replacing sand is higher ,the compressive strength and the axial compressive strength are higher.


Sign in / Sign up

Export Citation Format

Share Document