Effects of substrates roughness on c-axis preferred orientation of ZnO films deposited by rf magnetron sputtering

2001 ◽  
Vol 672 ◽  
Author(s):  
Jae Bin Lee ◽  
Sanghyon Kwack ◽  
Hyeong Joon Kim

ABSTRACTWe investigated the effect of substrate surface roughness on c-axis preferred orientation of ZnO films deposited by radio frequency (rf) magnetron sputtering. We used as substrates a bare Si(100), evaporated Au/Si(100), evaporated Al/Si(100), and sputtered Al/Si(100), of which rms roughness by atomic force microscope (AFM) were 0.127, 1.71, 2.11, and 6.5∼11.8 nm, respectively. The crystallinity and the c-axis preferred orientation of ZnO films strongly depended on the surface roughness of the used substrates.

2001 ◽  
Vol 08 (06) ◽  
pp. 689-692
Author(s):  
SHAHZAD NASEEM

Nb thin films have been prepared with e-beam evaporation under UHV conditions, and by RF magnetron sputtering. Al thin films were deposited by resistive heating in the UHV chamber. The preparation of these films and the trilayers of Nb/AlO x /Nb are intended for their use in Josephson junctions. Surface studies of these films are undertaken by using an atomic force microscope in the noncontact mode. These studies have revealed that the sputter-deposited Nb film surface is smoother than that of the UHV e-beam evaporated with R rms values of 3.5 and 4.0 nm respectively. Al thin films have a very smooth surface, with an R rms value of only 0.9 nm. Consequently, UHV-evaporated Nb thin films deposited on top of Al thin films are smoother, with a surface roughness of 1.8 nm.


2014 ◽  
Vol 605 ◽  
pp. 219-222
Author(s):  
Petr Novák ◽  
Pavol Šutta ◽  
M. Netrvalová ◽  
Jan Říha ◽  
Rostislav Medlín

Zinc Oxide (ZnO) is a wide bandgap semiconductor material which can be successfully used for wide variety of potential applications such as biosensors or acoustic resonator devices. ZnO normally crystallizes in the wurtzitestructure with c-axis (001) preferred orientation. However, for bio-sensing in liquids, it is necessary to generate a shear horizontal mode wave, where the wave displacement is within the plane of the crystal surface. For generation of such a shear horizontal wave, a-axis film textures such as the (110) or (100) is necessary. This work is focused on the preferred orientation control of ZnO film prepared by RF magnetron sputtering. It is found that preferred orientation can be controlled by substrate bias and substrate temperature during deposition without the use of expensive crystalline substrates. There are three areas of operating parameters when the structure of the ZnO films is dominated by different preferred orientation. Moreover, the film annealing was performed to enhance the film structure.


2004 ◽  
Vol 221 (1-4) ◽  
pp. 32-37 ◽  
Author(s):  
Woong Lee ◽  
Deuk-Kyu Hwang ◽  
Min-Chang Jeong ◽  
Myeongkyu Lee ◽  
Min-Seok Oh ◽  
...  

2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Chaoyang Li ◽  
Mamoru Furuta ◽  
Tokiyoshi Matsuda ◽  
Takahiro Hiramatsu ◽  
Hiroshi Furuta ◽  
...  

Polycrystalline zinc oxide (ZnO) films were prepared by radio frequency (RF) magnetron sputtering under different powers. The XRD results showed that ZnO crystallite size along c-axis decreased by 43% with deposition power increased from 60 W to 300 W, increased 36% with annealing temperature rising to400∘C. TDS measurement revealed that the desorption peaks of both atomic Zn (60 W-deposited) and oxygen molecule (180 W and 300 W-deposited) obtained from ZnO films were originated from300∘C. When annealing temperature was higher than300∘C, the sheet resistance dramatically decreased, and compressive stress in the (002) plane changed to tensile stress as well. The comparison measurements of ZnO films crystallinity strongly suggested that both lower deposition power and certain thermal annealing temperature over300∘Cwould contribute to the formation of high quality ZnO films.


2014 ◽  
Vol 1053 ◽  
pp. 325-331
Author(s):  
Yang Zhou ◽  
Hong Fang Zheng ◽  
Guang Zhao ◽  
Man Li ◽  
Bao Ting Liu

ZnO thin film has been fabricated on sapphire substrate (0001) using RF magnetron sputtering at room temperature. The influence of sputtering power ranging from 10 W to 70 W on the microstructural and optical properties of ZnO films is investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer. The AFM results show that with the increase of sputtering power, the size of ZnO crystalline increases first, then decrease and the maximum grain size occurs at 50 W. The XRD measurements indicate that the ZnO films with wurtzite structure are highly c-axis orientation and the film fabricated at 50 W has the best crystalline quality. Optical transmission spectra of the ZnO samples demonstrate that the ZnO film obtained at 50 W has the higher average transmission (above 90%) in the visible-light region and its optical band gap is 3.26 eV.


2021 ◽  
Author(s):  
◽  
Dayna-Maree Kivell

<p>The aim of this study was to develop a deposition process using RF magnetron sputtering for the production of zinc oxide (ZnO) thin films on glass substrates. These ZnO films were to be used as the active piezoelectric element in very high frequency ultrasound transducers (> 300 MHz). In order to achieve piezoelectric activity the films had to be oriented with the c-axis of the ZnO grains perpendicular to the substrate surface. At the same time, a moderately high, at least 1 m=hr (17 nm=min) deposition rate was required for the production of practical devices. Prior to a full investigation into the sputtering parameters, an initial evaluation of the HHV Auto500 RF magnetron sputter coater system was performed. Using the original chamber configuration it was not possible to deposit ZnO at the required deposition rates. A modification of the growth chamber to allow a reduced target-substrate distance was successful in producing ZnO films at the required deposition rates. A systematic study into the deposition parameters and their effect on the ZnO film quality and deposition rates was then performed and it was found that strong c-axis oriented films could be deposited only when depositing at rates below 15 nm=min at a low substrate temperature (< 50 C). Depositions above this rate resulted in the growth of polycrystalline films. A two-step deposition process was designed to preserve c-axis orientation at high deposition rates up to 28 nm=min. The ZnO films were found to be highly strained due to inherent stress from the sputtering process. The deposition pressure was identified as the most critical deposition parameter for stress control. It was found that deposition above a critical pressure of 1:2 x10-² mbar was essential to prevent mechanical failure of the films. Post growth annealing was investigated and determined to be a viable technique to relax stress and improve the crystalline quality of the films. Finally a four-step deposition process was proposed to facilitate the growth of c-axis oriented ZnO films at relatively high deposition rates whilst minimising film stress.</p>


2013 ◽  
Vol 760-762 ◽  
pp. 776-779
Author(s):  
Shuang Li ◽  
Ming Chen ◽  
Feng Xiang Wang

In the present work, we investigated the effect of sputtering power on the structural and optical properties of ZnO films by radio frequency (rf) magnetron sputtering. Atom force microscopy (AFM), X-ray diffraction (XRD) and Prism coupling method were adopted to investigate the structure and optical properties of ZnO thin films deposited by sputtering powers in the range from 100~150W. XRD and AFM results shown that ZnO films with high c-axis preferred orientation crystalline structures have been successfully deposited under higher sputtering power condition. Moreover, it was also found that the indexes refractive of the films obtained by higher sputtering power are less than that of the bulk ZnO materials, which is closer to Crystal Refractive index.


1998 ◽  
Vol 13 (5) ◽  
pp. 1260-1265 ◽  
Author(s):  
Yong Eui Lee ◽  
Young Jin Kim ◽  
Hyeong Joon Kim

The microstructural evolution, including preferred orientation and surface morphology, of ZnO films deposited by rf magnetron sputtering was investigated with increasing film thickness. Preferred orientation of the ZnO films changed from (0002) → (1011) → (1120) and fine and dense columnar grains also changed to large elongated grains with increasing thickness. Such selective texture growth was explained with an effect of highly energetic species bombardment on the growing film surface. The relationship between preferred orientation change and microstructural evolution was also discussed.


2018 ◽  
Vol 788 ◽  
pp. 68-73
Author(s):  
Jānis Grabis ◽  
Anita Letlena ◽  
Ints Šteins ◽  
Māra Lubāne ◽  
Aija Krūmiņa

Thin films of ZnO, ZnO coated with TiO2 and ZnO modified with titania were prepared by using simple spray pyrolysis of zinc and titanium containing solutions. The photicatalytic activity of the obtained films was determined by degradation of MB solution under UV and simulated solar illumination. The photocatalytic activity of ZnO/TiO2 films depended on the content of titania, substrate surface roughness, surface area and deposition cycles. The highest activity under simulated solar light was detected for ZnO films containing 3 wt.% of TiO2.


Sign in / Sign up

Export Citation Format

Share Document