Scaling Effects in Al72Mn22Si6 Quasicrystals Deduced from the Pressure and Temperature Dependence of the Resistance

2001 ◽  
Vol 699 ◽  
Author(s):  
John K. Vassiliou ◽  
Jens W. Otto ◽  
A. Pothireddy ◽  
E. A. Simons

AbstractX-ray diffraction and resistivity measurements on the Al72Mn22Si6 (Al-Mn-Si) rapidly quenched alloy are reported. The x-ray pattern shows that the alloy is essentially single phase, with a little mixture of unreacted Al. The peaks can be indexed using icosahedral vectors in the six dimensional space Z6. The resistance of thin ribbons of Al72Mn22Si6 quasicrystals has been measured as a function of temperature between 1.4 and 300 K at fixed pressures in the range 0 to 15 Kbar. Below 40 K, the resistance increases with decreasing temperature, and below 14 K, the conductivity varies as T1/2. This result is in agreement with the scaling and localization models in which spatial disorder and electron-electron correlation effects determine the electronic transport properties of the material. The value of the magnetoresistance measured at 60 KGauss and 0.34 K agrees qualitatively with the predictions of the above models. The pressure dependence of the correlation gap and the resistivity suggests that the system is in the strong coupling limit. In this regime, the functional dependence of the correlation energy on resistivity is Δ ~ ρ-2.

1997 ◽  
Vol 12 (11) ◽  
pp. 2976-2980 ◽  
Author(s):  
R. Jose ◽  
Asha M. John ◽  
J. Kurian ◽  
P. K. Sajith ◽  
J. Koshy

A new class of complex perovskites REBa2ZrO5.5 (where RE = La, Ce, Eu, and Yb) have been synthesized and sintered as single phase materials by the solid state reaction method. The structure of these materials was studied by x-ray diffraction, and all of them were found to be isostructural, having a cubic perovskite structure. X-ray diffraction and resistivity measurements have shown that there is no detectable chemical reaction between YBa2Cu3O7–delta; and REBa2ZrO5.5 even under severe heat treatment at 950 °C, and that the addition of REBa2ZrO5.5 up to 20 vol.% in YBa2Cu3O7–δ shows no detrimental effect on the superconducting properties of YBa2Cu3O7-δ. Dielectric constants and loss factors are in the range suitable for their use as substrates for microwave applications. Thick films of YBa2Cu3O7–δ fabricated on polycrystalline REBa2ZrO5.5 substrates gave a zero resistance transition temperature Tc(0) ∼ 92 K, indicating the suitability of these materials as substrates for YBa2Cu3O7–δ.


2001 ◽  
Vol 15 (02) ◽  
pp. 157-165
Author(s):  
D. CIURCHEA

Full pattern decomposition was applied to the X-ray diffraction patteren of a single phase orthorhombic ( Bi 1.6 Pb 0.4)( Sr 1.8 Ba 0.2)( Ca 1.96 Lu 0.04) Cu 3 O y superconductor. Delocalization of the Sr atoms induces terracing of the Cu/Ca/Cu superconducting stacking up to 0.6 Å, in the range of the c-axis coherence length. This yields a three dimensional character of the conduction evidenced in the resistivity measurements also. The effect is direct consequence of the loss of symmetry implied by the orthorhombic structure.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Y. Muraoka ◽  
K. Iwai ◽  
S. Yoshida ◽  
T. Wakita ◽  
M. Hirai ◽  
...  

ABSTRACTWe have prepared a CrO2 thin film by chemical vapor deposition from a Cr8O21 precursor and studied the bulk and surface physical properties. The CrO2 thin film is grown on TiO2(100) substrate by heating precursor and TiO2 (100) substrate together in a sealed quartz tube. The prepared film is found from x-ray diffraction analysis to be an (100)-oriented single phase. The magnetization and resistivity measurements indicate that the film is a ferromagnetic metal with a Curie temperature of about 400 K. Cr 3s core-level and valence band photoelectron spectroscopy spectra reveal the presence of a metallic CrO2 in the surface region of the film. Our work indicates that preparation from a Cr8O21 precursor in a closed system is promising for obtaining a CrO2 thin film with the metallic surface.


Author(s):  
Edgar S. Etz ◽  
Thomas D. Schroeder ◽  
Winnie Wong-Ng

We are investigating by Raman microprobe measurements the superconducting and related phases in the LnBa2Cu3O7-x (for x=0 to 1) system where yttrium has been replaced by several of the lanthanide (Ln = Nd,Sm,Eu,Ho,Er) elements. The aim is to relate the observed optical spectra (Raman and fluorescence) to the compositional and structural properties of these solids as part of comprehensive materials characterization. The results are correlated with the methods of synthesis, the processing techniques of these materials, and their superconducting properties. Of relevance is the substitutional chemistry of these isostructural systems, the differences in the spectra, and their microanalytical usefulness for the detection of impurity phases, and the assessment of compositional homogeneity. The Raman spectra of most of these compounds are well understood from accounts in the literature.The materials examined here are mostly ceramic powders prepared by conventional solid state reaction techniques. The bulk samples are of nominally single-phase composition as determined by x-ray diffraction.


Author(s):  
L. A. Giannuzzi ◽  
A. S. Ramani ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

The δ phase is a Zn-rich intermetallic, having a composition range of ∼ 86.5 - 92.0 atomic percent Zn, and is stable up to 665°C. The stoichiometry of the δ phase has been reported as FeZn7 and FeZn10 The deviation in stoichiometry can be attributed to variations in alloy composition used by each investigator. The structure of the δ phase, as determined by powder x-ray diffraction, is hexagonal (P63mc or P63/mmc) with cell dimensions a = 1.28 nm, c = 5.76 nm, and 555±8 atoms per unit cell. Later work suggested that the layer produced by hot-dip galvanizing should be considered as two distinct phases which are characterized by their morphological differences, namely: the iron-rich region with a compact appearance (δk) and the zinc-rich region with a columnar or palisade microstructure (δp). The sub-division of the δ phase was also based on differences in diffusion behavior, and a concentration discontinuity across the δp/δk boundary. However, work utilizing Weisenberg photographs on δ single crystals reported that the variation in lattice parameters with composition was small and hence, structurally, the δk phase and the δp phase were the same and should be thought of as a single phase, δ. Bastin et al. determined the average cell dimensions to be a = 1.28 nm and c = 5.71 nm, and suggested that perhaps some kind of ordering process, which would not be observed by x-ray diffraction, may be responsible for the morphological differences within the δ phase.


2021 ◽  
Vol 56 (19) ◽  
pp. 11237-11247 ◽  
Author(s):  
Johannes Pötschke ◽  
Manisha Dahal ◽  
Mathias Herrmann ◽  
Anne Vornberger ◽  
Björn Matthey ◽  
...  

AbstractDense (Hf, Ta, Nb, Ti, V)C- and (Ta, Nb, Ti, V, W)C-based high-entropy carbides (HEC) were produced by three different sintering techniques: gas pressure sintering/sinter–HIP at 1900 °C and 100 bar Ar, vacuum sintering at 2250 °C and 0.001 bar as well as SPS/FAST at 2000 °C and 60 MPa pressure. The relative density varied from 97.9 to 100%, with SPS producing 100% dense samples with both compositions. Grain size measurements showed that the substitution of Hf with W leads to an increase in the mean grain size of 5–10 times the size of the (Hf, Ta, Nb, Ti, V,)C samples. Vacuum-sintered samples showed uniform grain size distribution regardless of composition. EDS mapping revealed the formation of a solid solution with no intermetallic phases or element clustering. X-ray diffraction analysis showed the structure of mostly single-phase cubic high-entropy carbides. Hardness measurements revealed that (Hf, Ta, Nb, Ti, V)C samples possess higher hardness values than (Ta, Nb, Ti, V, W)C samples.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050003
Author(s):  
M. R. Hassan ◽  
M. T. Islam ◽  
M. N. I. Khan

In this research, influence of adding Li2CO3 (at 0%, 2%, 4%, 6%) on electrical and magnetic properties of [Formula: see text][Formula: see text]Fe2O4 (with 60% Ni and 40% Mg) ferrite has been studied. The samples are prepared by solid state reaction method and sintered at 1300∘C for 6[Formula: see text]h. X-ray diffraction (XRD) patterns show the samples belong to single-phase cubic structure without any impurity phase. The magnetic properties (saturation magnetization and coercivity) of the samples have been investigated by VSM and found that the higher concentration of Li2CO3 reduces the hysteresis loss. DC resistivity increases with Li2CO3 contents whereas it decreases initially and then becomes constant at lower value with temperature which indicates that the studied samples are semiconductor. The dielectric dispersion occurs at a low-frequency regime and the loss peaks are formed in a higher frequency regime, which are due to the presence of resonance between applied frequency and hopping frequency of charge carriers. Notably, the loss peaks are shifted to the lower frequency with Li2CO3 additions.


1991 ◽  
Vol 05 (24n25) ◽  
pp. 1635-1638
Author(s):  
S.M. M.R. NAQVI ◽  
A.A. QIDWAI ◽  
S.M. ZIA-UL-HAQUE ◽  
FIROZ AHMAD ◽  
S.D.H. RIZVI ◽  
...  

Bi1.7-Pb0.3-Sr2-Ca2-Cu3-Ox superconducting samples were prepared at 855°C, 862 C, 870 C, and 882 C sintering temperatures respectively. All samples were sintered for 120 hours. The samples were then quenched in liquid nitrogen. The electrical resistivity measurements showed that the samples sintered at 870° C had the best Tc. For these samples the Tc onset was around 120 K and the zero resistance was obtained at 108 K. X-ray diffraction studies showed that the samples were multiphased.


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


1989 ◽  
Vol 03 (04) ◽  
pp. 307-311 ◽  
Author(s):  
N. CAO ◽  
J.Q. ZHENG ◽  
X.Y. SHAO ◽  
X.S. CHEN ◽  
W.Y. GUAN

The composition dependence of superconductivity and crystal structure in La ( Ba 1−x Ca x)2 Cu 3 O 7−y system was determined by the resistivity measurements and X-ray diffraction analysis. The superconducting transition temperature is raised with the increase of Ca content till x=0.6, at which the zero resistance temperature of the sample is 81.5 K. In the meanwhile, the crystal structure of the sample changed from tetragonal (x=0) to orthorhombic structure (x=0.2, 0.4, 0.6). With further increase of Ca content, the superconductivity decrease for the sample of x=0.8 with mixed phases including the orthorhombic oxygen-deficient perovskite-like (ODP) structure and no superconducting transition is found at 4.2 K for the sample of x=1 without the ODP structure. A possible explanation of these experimental results is given.


Sign in / Sign up

Export Citation Format

Share Document