Modeling Dopant Redistribution During Rapid Thermal Annealing

1986 ◽  
Vol 71 ◽  
Author(s):  
Archie Y.C. Chan

AbstractThe diffusion of ion-implanted dopants in silicon during rapid thermal annealing is modeled using the finite difference method.The change in impurity profile for an initial Pearson IV boron implant is negligible(less than 1 % change in junction depth) when the peak annealing temperature(TP ) is less than 1050 °C and its duration is shorter than 20 seconds. The dopant redistribution becomes significant(greater than 25 % change in junction depth) when Tp is greater than 1200 °C and its duration is longer than 40 seconds.The heatup and cooldown portions of the transient annealing cycle are found to have little effect on dopant redistribution provided that their rates are higher than 120 °C per second.

1985 ◽  
Vol 52 ◽  
Author(s):  
C. Ho ◽  
R. Kwor ◽  
C. Araujo ◽  
J. Gelpey

ABSTRACTThe rapid thermal annealing (RTA) of p+n and n+p diodes, fabricated by the LOCOS process, and its subsequent effects on junction leakage current, junction depth and dopant activation were investigated. The reverse bias diode leakage currents of implanted Si <100> samples (As+: 60 KeY, 5×1014 5×1015 cm−2, B+: 25 KeV, l×1014, l×1015 cm−2 and BF2+: 45 KeV, 1×1015cm−2 ) were measured as functions of annealing temperature, and dwell time. The annealing was performed using an Eaton RTA system (Nova ROA-400) at temperatures ranging from 950 °C to 1150 °C. Annealing times ranged from 0.2 sec. to 10 sec. The results from the diode leakage current analysis are correlated with those from Secondary Ion Mass Spectroscopy (SIMS) and differential Hall measurements. The reverse-biased leakage currents from the RTA-treated samples are compared with those from furnace-annealed samples.


1987 ◽  
Vol 92 ◽  
Author(s):  
Tan-Hua Yu ◽  
Sujane Wang

ABSTRACTA buried p-layer in GaAs MESFET channel is successfully formed by (Si,Be) co-implantation and rapid thermal annealing process. The annealing cycle is optimized to activate Si and Be simultaneously and to minimize the dopant redistribution for precise dopant control. As a result, more than 80% activation efficiency for both Si and Be, as well as the greatly improved doping abruptness from 85 nm/decade to 65 nm/decade are achieved. Devices are fabricated and superior performance including sharper pinchoff, an increase of RF gain by 2–3dB and a 40% decrease in backgating effect is observed.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2248 ◽  
Author(s):  
Hadi Mahmodi ◽  
Md Hashim ◽  
Tetsuo Soga ◽  
Salman Alrokayan ◽  
Haseeb Khan ◽  
...  

In this work, nanocrystalline Ge1−xSnx alloy formation from a rapid thermal annealed Ge/Sn/Ge multilayer has been presented. The multilayer was magnetron sputtered onto the Silicon substrate. This was followed by annealing the layers by rapid thermal annealing, at temperatures of 300 °C, 350 °C, 400 °C, and 450 °C, for 10 s. Then, the effect of thermal annealing on the morphological, structural, and optical characteristics of the synthesized Ge1−xSnx alloys were investigated. The nanocrystalline Ge1−xSnx formation was revealed by high-resolution X-ray diffraction (HR-XRD) measurements, which showed the orientation of (111). Raman results showed that phonon intensities of the Ge-Ge vibrations were improved with an increase in the annealing temperature. The results evidently showed that raising the annealing temperature led to improvements in the crystalline quality of the layers. It was demonstrated that Ge-Sn solid-phase mixing had occurred at a low temperature of 400 °C, which led to the creation of a Ge1−xSnx alloy. In addition, spectral photo-responsivity of a fabricated Ge1−xSnx metal-semiconductor-metal (MSM) photodetector exhibited its extending wavelength into the near-infrared region (820 nm).


1990 ◽  
Vol 181 ◽  
Author(s):  
A. Katz ◽  
S. J. Pearton ◽  
M. Geva

ABSTRACTAn intensive comparison between the efficiency of InP rapid thermal annealing within two types of SiC-coated graphite susceptors and by using the more conventional proximity approach, in providing degradation-free substrate surface morphology, was carried out. The superiority of annealing within a susccptor was clearly demonstrated through the evaluation of AuGe contact performance to carbon-implanted InP substrates, which were annealed to activate the implants prior to the metallization. The susceptor annealing provided better protection against edge degradation, slip formation and better surface morphology, due to the elimination of P outdiffusion and pit formation. The two SiC-coated susceptors that were evaluated differ from each other in their geometry. The first type must be charged with the group V species prior to any annealing cycle. Under the optimum charging conditions, effective surface protection was provided only to one anneal (750°C, 10s) of InP before charging was necessary. The second contained reservoirs for provision of the group V element partial pressure, enabled high temperature annealing at the InP without the need for continual recharging of the susceptor. Thus, one has the ability to subsequentially anneal a lot of InP wafers at high temperatures without inducing any surface deterioration.


1996 ◽  
Vol 69 (7) ◽  
pp. 996-998 ◽  
Author(s):  
Gong‐Ru Lin ◽  
Wen‐Chung Chen ◽  
Feruz Ganikhanov ◽  
C.‐S. Chang ◽  
Ci‐Ling Pan

1991 ◽  
Vol 69 (3-4) ◽  
pp. 451-455 ◽  
Author(s):  
H. Lafontaine ◽  
J. F. Currie ◽  
S. Boily ◽  
M. Chaker ◽  
H. Pépin

Tungsten thin films are deposited with a triode sputtering system in order to obtain an absorbing layer for X-ray masks. The mechanical stress is studied as a function of different pressure and RF power conditions during deposition. Rapid thermal annealing at different temperatures and durations is performed in order to produce films under low compressive stress. We observe that the stress changes occur over the time scale of seconds at the annealing temperature and that the corresponding activation energies are low (60 meV). Grain growth in a preferred orientation explains the observed changes in stress. The magnitude in the change of stress is in good agreement with a model proposed by Hoffman et al. relating the stress to grain size and grain boundary dimensions. [Journal translation]


2019 ◽  
Vol 14 (1) ◽  
pp. 53-63 ◽  
Author(s):  
M. S. Bashar ◽  
Rummana Matin ◽  
Munira Sultana ◽  
Ayesha Siddika ◽  
M. Rahaman ◽  
...  

AbstractThe ZnS thin films have been deposited by radio frequency magnetron sputtering at room temperature. Post-deposition rapid thermal annealing treatment was done for the films deposited at different powers ranging from 70 to 100 W. One peak is observed for as-deposited and annealed thin films at around 28.48° corresponding to the (111) reflection plane indicating a zincblende structure. The overall intensity of the peaks and the FWHM values of as-deposited films increased after annealing corresponding to the increase in crystallinity. The optical energy bandgap is found in the range of 3.24–3.32 eV. With increasing annealing temperature, the decrease in the Urbach energy values indicating a decrease in localized states which is in good agreement with the XRD results where the crystallinity increased. The surface morphology of the films seems to be composed of Nano-granules with a compact arrangement. Apparently, the grain size increases in the deposited films as annealing temperature increases. The compositional ratio attained close to the stoichiometric ratio of 1:1 after annealing. From the Hall effect measurement, the carrier concentration and mobility are found to increase after annealing. The high carrier concentration and mobility also comply with structural and optical analysis. Best results are found for the film annealed at 400 °C deposited at 90 W.


Sign in / Sign up

Export Citation Format

Share Document